Rejeb HADIJI
- Fiche
- Publications
Nom: | HADIJI |
![]() |
Prénom: | Rejeb | |
Site: | UPEC | |
Bureau: | P3 422 | |
Téléphone: | +33 1 45 17 65 73 | |
Situation: | Permanent | |
Statut: | Maître de conférences | |
Équipe de recherche: | Équations aux dérivées partielles | |
Courriel: | rejeb.hadiji [at] u-pec.fr | |
Page personnelle: | http://perso.math.u-pem.fr/hadiji.rejeb/ | |
Publications au sein du laboratoire
La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.
-
Errata to the paper “Minimization of a Ginzburg-Landau type energy with potential having a zero of infinite order”Differential Integral Equations 31 (2018) 157-159.
-
Existence of solutions of a non-linear eigenvalue problem with a variable weight
-
The effect of a discontinuous weight for a critical Sobolev problem
-
Asymptotic analysis for two joined thin slanting ferromagnetic films
-
Ferromagnetic of nanowires of infinite length and infinite thin films
-
Ferromagnetic of nanowires of infinite length and infinite thin films
-
Ferromagnetic thin multi-structures
-
A nonlinear general Neumann problem involving two critical exponents
-
Ferromagnetic thin multi-structures
-
A non-linear problem involving a critical Sobolev exponent.
-
3D-2D ASYMPTOTIC OBSERVATION FOR MINIMIZATION PROBLEMS ASSOCIATED WITH DEGENERATIVE ENERGY-COEFFICIENTS
-
Junction of ferromagnetic thin films
-
Junction of ferromagnetic thin films
-
ASYMPTOTIC ANALYSIS FOR MICROMAGNETICS OF THIN FILMS GOVERNED BY INDEFINITE MATERIAL COEFFICIENTS
-
Asymptotic Analysis for micromagnetics on thin films governed by indefinite material coefficient
-
Asymptotic Analysis, in a Thin Multidomain, of Minimizing Maps with Values in S^2
-
Asymptotic analysis, in a thin multidomain, of minimizing maps with values in S(2)
-
Minimization of a quasi-linear Ginzburg-Landau type energy
-
Minimization of a Quasi-linear Ginzburg-Landau type energy
-
Minimization of a Ginzburg-Landau type energy with a particular potentialNonlinear phenomena with energy dissipation. Mathematical analysis, modeling and simulation, Proceedings of international conference on: Nonlinear phenomena with energy dissipation. Mathematical analysis, modeling and simulation, Chiba, Japan, Tokyo: Gakkotosha. Gakuto International Series Mathematical Sciences and Applications 29 (2008) p. 141-151
-
Junction of One-Dimensional Minimization Problems involving S^2 Valued Maps
-
Problem with critical Sobolev exponent and with weight
-
Problem with critical Sobolev exponent and with weight
-
Localization of solutions for nonlinear elliptic problems with critical growth
-
Remarks on solutions of a fourth-order problem
-
HOMOGENIZATION OF THE GINZBURG-LANDAU EQUATION IN A DOMAIN WITH OSCILLATING BOUNDARY
-
A biharmonic problem with constraint involving critical Sobolev exponent
-
Regularity of minimizing maps with values in $\mathbb{S}^2$ and some numerical simulations
-
A Ginzburg-Landau problem with weight having minima on the boundaryProceedings of the Royal Society of Edinburgh: Section A Mathematics 128 (1998) 1181--1215
-
A problem of minimization with relaxed energy
-
Relaxed energies for functionals on W1,1(B2, S1)
-
Regularity of \int {|\nabla u|^2 +\lambda |u - f|^2} and some gap phenomenon
-
Solutions positives de l'équation $- \Delta u = u^p + \mu u^q$ dans un domaine à trou

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Paris-Est - Créteil Val-de-Marne
Université Paris-Est - Créteil Val-de-Marne
61 avenue du Général de Gaulle
Bâtiment P
94010 Créteil