Raphaël DANCHIN
- Fiche
- Publications
Nom: | DANCHIN |
![]() |
Prénom: | Raphaël | |
Site: | UPEC | |
Bureau: | P3 409 | |
Téléphone: | +33 1 45 17 65 93 | |
Situation: | Permanent | |
Statut: | Professeur | |
Équipe de recherche: | Équations aux dérivées partielles | |
Courriel: | raphael.danchin [at] u-pec.fr | |
Page personnelle: | http://perso.math.u-pem.fr/danchin.raphael/ | |
Publications au sein du laboratoire
La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.
-
On the global existence and time decay estimates in critical spaces for the Navier–Stokes–Poisson systemMathematical News / Mathematische Nachrichten (2017)
-
On the persistence of Hölder regular patches of density for the inhomogeneous Navier-Stokes equationsJournal de l'École polytechnique — Mathématiques 4 (2017) 781-811
-
Global persistence of geometrical structures for the Boussinesq equation with no diffusionCommunications in Partial Differential Equations 42 (2017) 68-99
-
OPTIMAL TIME-DECAY ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE CRITICAL L p FRAMEWORK
-
The low match number limit for a barotropic model of radiative flow
-
DIFFUSIVE LIMITS FOR A BAROTROPIC MODEL OF RADIATIVE FLOW
-
The incompressible limit in $L^p$ type critical spaces
-
Critical functional framework and maximal regularity in action on systems of incompressible flowsMémoires de la Société Mathématique de France 143 (2015) 151 pages
-
On a simplified model for radiating flows
-
Inhomogeneous Navier-Stokes equations in the half-space, with only bounded density
-
A Lagrangian approach for the compressible Navier-Stokes equations
-
The Oberbeck-Boussinesq approximation in critical spaces
-
Incompressible flows with piecewise constant density
-
Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics
-
Divergence
-
The divergence equation in rough spaces
-
Madelung, Gross-Pitaevskii and Korteweg
-
A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations
-
A Lagrangian Approach for the Incompressible Navier-Stokes Equations with Variable DensityCommunications on Pure and Applied Mathematics 65 (2012) 1458-1480
-
On the well-posedness of the full low-Mach number limit system in general critical Besov spaces
-
Fourier Analysis and Nonlinear Partial Differential EquationsSpringer Grundlehren der mathematischen Wissenschaften 343 (2011) 523 pages
-
The well-posedness issue for the density-dependent in endpoint Besov spaces
-
GLOBAL EXISTENCE RESULTS FOR THE ANISOTROPIC BOUSSINESQ SYSTEM IN DIMENSION TWO
-
Global existence results for the anisotropic Boussinesq system in dimension twoMathematical Models and Methods in Applied Sciences 21 3 (2011) 421-457
-
ON THE LINEAR WAVE REGIME OF THE GROSS-PITAEVSKII EQUATION
-
On the solvability of the compressible Navier-Stokes system in bounded domains
-
On the well-posedness of the incompressible density-dependent Euler equations in the $L^p$ framework
-
A Global Existence Result for the Compressible Navier-Stokes Equations in the Critical L(p) Framework
-
Problème de Stokes et système de Navier-Stokes incompressible à densité variable dans le demi-espaceSéminaire Équations aux dérivées partielles. Ecole Polytechnique. Palaiseau 10 (2009) 19 pages
-
Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type dataComm. Math. Phys. 290 1 (2009) 1-14
-
A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space
-
Global Well-Posedness Issues for the Inviscid Boussinesq System with Yudovich's Type Data
-
Les équations d'Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l'équation de Gross-PitaevskiiSéminaire Équations aux Dérivées Partielles. École Polytechnique, Palaiseau 1 (2008) 12 pages
-
Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces
-
The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosityBulletin de la société mathématique de France 136 2 (2008) 261--309
-
On the well-posedness for the Euler-Korteweg model in several space dimensions

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Paris-Est - Créteil Val-de-Marne
Université Paris-Est - Créteil Val-de-Marne
61 avenue du Général de Gaulle
Bâtiment P
94010 Créteil