Méthodes numériques pour les équations de Saint-Venant et des modèles associés

Orateur: Putu-Harry GUNAWAN
Type: Thèse
Directeur: Robert EYMARD
Site: UPEM
Salle: Salle 4B 110, Université Paris-Est - Marne-la-Vallée
Date de début: 29/01/2015 - 08:00
Date de fin: 29/01/2015 - 09:00

Cette thèse porte sur l'approximation numérique des équations de Saint-Venant et de quelques problèmes qui leur sont reliés. Dans la première partie, nous analysons les propriétés mathématiques et les applications des schémas numériques sur grilles décalées. La robustesse de ces schémas est prouvée sur des applications telles que les équations de Saint-Venant dans un domaine en rotation, en vue des écoulements géostrophiques, ainsi que l'extension de ces équations au cas visqueux. Dans la seconde partie, nous présentons des modèles basés sur les équations de Saint-Venant. Nous commençons par étudier le couplage avec l'équation d'Exner, qui porte sur le transport des sédiments. Nous observons des propriétés de convergence numérique vers la solution exacte dans un cas de solution analytique, et nous constatons un bon accord avec des données expérimentales dans le cas de la rupture de barrage avec fond érodable. Nous continuons par l'étude d'un schéma numérique, basé sur une méthode de volumes finis colocalisés (HLLC) pour l'approximation du modèle de Richard-Gavrilyuk. Ce modèle étend les équations de Saint-Venant au cas des écoulements avec cisaillement. Des tests numériques montrent la validité du schéma.

télécharger