Systèmes Elliptiques Issus de la Modélisation des Supraconducteurs

Orateur: Peng ZHANG
Type: Séminaire des doctorants
Site: UPEM
Salle: 4B010R
Date de début: 19/11/2014 - 15:00
Date de fin: 19/11/2014 - 15:00

Ce travail porte sur des équations aux dérivées partielles issues de la physique mathématique, plus particulièrement sur celles régissant la supraconductivité. Ainsi, la majorité du travail concerne le modèle de Ginzburg-Landau, qui est un modèle macroscopique de supraconducteurs de type-II. Ce travail est divisé en deux parties principales: • La première partie se focalise sur l’analyse des vortex du modèle de Ginzburg-Landau en deux dimensions pour les supraconducteurs de type-II, modèle conduisant à une estimation de la variation du nombre de vortex et à l’optimalité du réseau d’Abrikosov parmi les réseaux de Bravais. Nous avons également étudié certains modèles de stuctures des matériaux comme ceux de Lennard-Jones et de Thomas-Fermi. • La seconde partie est consacrée à la fonctionnelle de Ginzburg-Landau en dimension n. Deux résultats principaux sont obtenus. L’un porte sur l’énergie renormalisée pour les minimiseurs de la fonctionnelle Ginzburg-Landau. L’autre concerne les limites des solutions de l’équation de Ginzburg-Landau. Ces deux résultats sont fortement reliés aux applications n-harmoniques.