Julien ROTH
- Fiche
- Publications
Nom: | ROTH |
![]() |
Prénom: | Julien | |
Site: | UGE | |
Bureau: | 4B 060 | |
Téléphone: | +33 1 60 95 76 81 | |
Situation: | Permanent | |
Statut: | Maître de conférences | |
Équipe de recherche: | Géométrie et courbure | |
Courriel: | julien.roth [at] univ-eiffel.fr | |
Page personnelle: | http://perso.math.u-pem.fr/roth.julien/ | |
Publications au sein du laboratoire
La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.
-
ON COMPACT ANISOTROPIC WEINGARTEN HYPERSURFACES IN EUCLIDEAN SPACE
-
NEW STABILITY RESULTS FOR SPHERES AND THE WULFF SHAPES
-
EXPLICIT RIGIDITY OF ALMOST-UMBILICAL HYPERSURFACES
-
Spinorial representation of submanifolds in metric Lie groups
-
COMPLEX AND LAGRANGIAN SURFACES OF THE COMPLEX PROJECTIVE PLANE VIA KÄHLERIAN KILLING SPIN c SPINORS
-
A DDVV INEQUALITY FOR SUBMANIFOLDS OF WARPED PRODUCTS
-
A FUNDAMENTAL THEOREM FOR SUBMANIFOLDS OF MULTIPRODUCTS OF REAL SPACE FORMS
-
PINCHING OF THE FIRST EIGENVALUE FOR SECOND ORDER OPERATORS ON HYPERSURFACES OF THE EUCLIDEAN SPACE
-
SPINORIAL REPRESENTATION OF SUBMANIFOLDS IN RIEMANNIAN SPACE FORMS
-
Biharmonic submanifolds of generalized space forms
-
GENERAL REILLY-TYPE INEQUALITIES FOR SUBMANIFOLDS OF WEIGHTED EUCLIDEAN SPACES
-
LOWER BOUNDS FOR THE EIGENVALUES OF THE Spin c DIRAC OPERATOR ON MANIFOLDS WITH BOUNDARY
-
LOWER BOUNDS FOR THE EIGENVALUES OF THE Spin c DIRAC OPERATOR ON SUBMANIFOLDS
-
A new result about almost umbilical hypersurfaces of space forms
-
Spinors and isometric immersions of surfaces in 4-dimensional products
-
A note on biharmonic submanifolds of product spaces
-
A Remark on Almost Umbilical Hypersurfaces
-
The Spinc Dirac operator on hypersurfaces and applications
-
Upper bounds for the first eigenvalue of the Laplacian in terms of anisiotropic mean curvatures,
-
The Logarithmic Sobolev Constant of The Lamplighter
-
Spinorial representation of surfaces in four-dimensional Space Forms
-
Eigenvalue pinching and application to the stability and the almost umbilicity of hypersurfaces
-
The spinor representation formula in 3 and 4 dimensions
-
Hypersurfaces of Spinc manifolds and Lawson Type correspondence
-
Skew Killing spinors
-
Spinorial characterizations of surfaces into 3-dimensional psuedo-Riemannian space forms
-
Isometric immersions into Lorentzian products
-
Isometric Immersions of Hypersurfaces in 4-dimensional Manifolds via Spinors
-
Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds
-
Pincement de la première valeur propre du laplacien pour les hypersurfaces et rigidité
-
Une nouvelle caractérisation des sphères géodésiques dans les espaces modèles
-
Rigidity Results for Hypersurfaces in Space Forms

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Gustave Eiffel
Université Gustave Eiffel
5 boulevard Descartes
Bâtiment Copernic
77420 Champs-sur-Marne