Matthieu FRADELIZI
- Fiche
- Publications
Nom: | FRADELIZI |
![]() |
Prénom: | Matthieu | |
Site: | UGE | |
Bureau: | 4B 033 | |
Téléphone: | +33 1 60 95 75 22 | |
Situation: | Permanent | |
Statut: | Professeur | |
Équipe de recherche: | Analyse en grande dimension | |
Courriel: | matthieu.fradelizi [at] univ-eiffel.fr | |
Page personnelle: | http://perso.math.u-pem.fr/fradelizi.matthieu/ | |
Publications au sein du laboratoire
La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.
-
The convexification effect of Minkowski summation
-
On the volume of sections of a convex body by cones
-
Functional Versions of Lp-Affine Surface Area and Entropy Inequalities
-
Thin-shell concentration for convex measures
-
Stability of the functional forms of the Blaschke-Santaló inequality
-
Volume of the polar of random sets and shadow systems
-
The Logarithmic Sobolev Constant of The Lamplighter
-
The volume product of convex bodies with many hyperplane symmetries
-
The volume product of convex bodies with many hyperplane symmetries
-
An application of shadow systems to Mahler's conjecture.
-
The case of equality for an inverse Santalo functional inequality
-
Functional inequalities related to Mahler's conjecture
-
Concentration inequalities for s-concave measures of dilations of Borel sets and applicationsElectronic Journal of Probability 14 (2009) 2068--2090
-
Increasing functions and inverse Santalo inequality for unconditional functions
-
Some functional inverse Santalo inequalities
-
Some functional forms of Blaschke-Santalo inequality
-
A generalized localization theorem and geometric inequalities for convex bodies
-
The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems
-
The extreme points of subsets of s-concave probabilities and a geometric localization theorem
-
Some inequalities about mixed volumes
-
Sectional bodies associated with a convex body
-
A short solution to the Busemann-Petty problem

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Gustave Eiffel
Université Gustave Eiffel
5 boulevard Descartes
Bâtiment Copernic
77420 Champs-sur-Marne