On regular algebraic surfaces of $\mathbb{R}^3$ with constant mean curvature

Orateur: BARBOSA Lucas
Localisation: Université de Fortaleza, Brésil
Type: Séminaire de géométrie
Site: Hors LAMA , IMJ P7
Salle: 2015
Date de début: 07/04/2014 - 13:45
Date de fin: 07/04/2014 - 13:45

We consider regular surfaces $M$ that are given as the zeros of a polynomial function $p : \mathbb{R}^3 \rightarrow \mathbb{R}$, where the gradient of $p$ vanishes nowhere. We assume that $M$ has non-zero mean curvature and prove that there exist only two examples of such surfaces, namely the sphere and the circular cylinder