Pascal ROMON
- Fiche
- Publications
Nom: | ROMON |
![]() |
Prénom: | Pascal | |
Site: | UGE | |
Bureau: | 4B 034 | |
Téléphone: | +33 1 60 95 75 34 | |
Situation: | Permanent | |
Statut: | Maître de conférences | |
Équipe de recherche: | Géométrie et courbure | |
Courriel: | pascal.romon [at] univ-eiffel.fr | |
Page personnelle: | http://perso.math.u-pem.fr/romon.pascal/ | |
Publications au sein du laboratoire
La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.
-
Convexity Preserving Contraction of Digital Sets
-
Characterization of bijective digitized rotations on the hexagonal grid
-
Bijective digitized rigid motions on subsets of the plane
-
Discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3 : a discrete Lawson correspondence
-
Honeycomb geometry: Rigid motions on the hexagonal grid
-
Modern Approaches to Discrete Curvature
-
Bijective rigid motions of the 2D Cartesian grid
-
A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold
-
Topological alterations of 3D digital images under rigid transformations
-
Ricci curvature on polyhedral surfaces via optimal transportation
-
The Logarithmic Sobolev Constant of The Lamplighter
-
Introduction à la géométrie différentielle discrèteEllipses Références sciences (2013) 216
-
The spinor representation formula in 3 and 4 dimensions
-
The spectral data for Hamiltonian stationary Lagrangian tori in R^4
-
Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface
-
Darboux transforms and spectral curves of Hamiltonian stationary Lagrangian tori
-
Cyclic and ruled Lagrangian surfaces in complex Euclidean space
-
Lagrangian submanifolds foliated by (n-1)-spheres in R^2n
-
Hamiltonian stationary tori in the complex projective plane
-
The periodic isoperimetric problem
-
From cmc surfaces to Hamiltonian Stationary Lagrangian Surfaces
-
Hamiltonian stationary Lagrangian surfaces in C^2
-
A Weierstrass-type representation for Lagrangian surfaces in R^4
-
Hamiltonian stationary Lagrangian surfaces in Hermitian symmetric spaces
-
Embedded minimal ends of finite type
-
Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Gustave Eiffel
Université Gustave Eiffel
5 boulevard Descartes
Bâtiment Copernic
77420 Champs-sur-Marne