Mathieu MEYER
- Fiche
- Publications
Nom: | MEYER |
![]() |
Prénom: | Mathieu | |
Site: | UGE | |
Bureau: | 4B 020 | |
Téléphone: | +33 1 60 95 75 33 | |
Situation: | Permanent | |
Statut: | Professeur émérite | |
Équipe de recherche: | Analyse en grande dimension | |
Courriel: | mathieu.meyer [at] univ-eiffel.fr | |
Publications au sein du laboratoire
La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.
-
On the volume of sections of a convex body by cones
-
The Logarithmic Sobolev Constant of The Lamplighter
-
An application of shadow systems to Mahler's conjecture.
-
THE CONVEX INTERSECTION BODY OF A CONVEX BODY
-
THE GL-LUST. CONSTANT AND ASYMMETRY OF THE KALTON-PECK TWISTED SUM IN FINITE DIMENSIONS
-
On the volume product of polygons
-
New affine measures of symmetry for convex bodiesAdvances in Mathematics 228 5 (2011) 2920-2942
-
Geometric and probabilistic analysis of convex bodies with unconditional structures, and associated spaces of operatorsPositivity 14 1 (2010) 83-104
-
Functional inequalities related to Mahler's conjecture
-
The case of equality for an inverse Santalo functional inequality
-
Increasing functions and inverse Santalo inequality for unconditional functions
-
Some functional inverse Santalo inequalities
-
Some inequalities about mixed volumes
-
On the best approximation by ridge functions in the uniform normConstructive Approximation 18 1 (2002) 61--85
-
On the p-affine surface area
-
Maximal hyperplane sections of convex bodiesMathematika 46 91 (1999) 131--136
-
The slices of a cone and a characterization of ellipsoidsMathematika 45 90 (1998) 305--317
-
CONSTRUCTING A POLYTOPE TO APPROXIMATE A CONVEX BODY

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Gustave Eiffel
Université Gustave Eiffel
5 boulevard Descartes
Bâtiment Copernic
77420 Champs-sur-Marne