Stéphane JAFFARD

  • Fiche
  • Publications

Nom: JAFFARD
Prénom: Stéphane
Site: UPEC
Bureau: P2 234
Téléphone: +33 1 45 17 65 84
Situation: Permanent
Statut: Professeur
Équipe de recherche: Analyse harmonique
Courriel: stephane.jaffard [at] u-pec.fr
Page personnelle: http://perso.math.u-pem.fr/jaffard.stephane/
 

Publications au sein du laboratoire

La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.

  • P-leader multifractal analysis for text type identification
    ICASSP 2017 (2017) 4661-4665     
  • Evaluation of dental implant stability using ultrasonic characterization and multifractal analysis
    Congrès Français Mécanique (2017)      
  • Finite-Resolution Effects in $p$ -Leader Multifractal Analysis
    IEEE Transactions on Signal Processing 65 13 (2017) 3359 - 3368     
  • Generalized Legendre transform multifractal formalism for nonconcave spectrum estimation
    IEEE Workshop on statistical signal processing (SSP 2016) (2016) pp. 1-5     
  • Wove Paper Analysis through Texture Similarities
    50th IEEE Annual Asilomar Conference on Signals, Systems, and Computers (ASILOMAR 2016) (2016) pp. 144-148     
  • p-exponent and p-leaders, Part II: Multifractal Analysis. Relations to Detrended Fluctuation Analysis
    Physica A 448 (2016) pp. 319-339     
  • Caractérisation de la Réponse Ultrasonore d’Implant Dentaire : Simulation Numérique et Analyse des Signaux
    13e Congrès Français Acoustique (2016)      
  • Numerical simulations and multifractal signal processing used in ultrasonic characterization of bone-implant interface in case of dental implants
    14th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (2016)      
  • p-exponent and p-leaders, Part I: Negative pointwise regularity
    Physica A (2016) pp. 300-318     
  • Hyperbolic wavelet leaders for anisotropic multifractal texture analysis
    IEEE International Conference on Image Processing (ICIP 2016) (2016) pp. 3558-3562     
  • Pitfall in Multifractal Analysis of Negative Regularity
    25eme Colloque Groupe de Recherche et d'Etudes du Traitement du Signal et des Images (GRETSI 2015) (2015) pp. 1-4     
  • p-leader Multifractal Analysis and Sparse SVM for Intrapartum Fetal Acidosis Detection
    37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015) (2015) pp. 1-4     
  • Hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic fields
    Revista Matemática Iberoamericana 31 1 (2015) 313-348     
  • Multiscale Anisotropic Texture Analysis and Classification of Photographic Prints: Art scholarship meets image processing algorithms
    IEEE Signal Processing Magazine 32 4 (2015) 18-27     
  • Extending multifractal analysis to negative regularity: p-exponents and p-leaders
    IEEE International Conference on Acoustics, Speech, and Signal Processing - ICASSP 2014 (2014) pp. 305-309     
  • p-leader based classification of first stage intrapartum fetal HRV
    VI Latin American Congress on Biomedical Engineering (CLAIB 2014) (2014) pp. 504-507     
  • Hyperbolic Wavelet Transform for Historic Photographic Paper Classification Challenge
    48th Annual Asilomar Conference on Signals, Systems, and Computers (ASILOMAR 2014) (2014) pp. 1-5     
  • When Van Gogh meets Mandelbrot: Multifractal Classification of Painting's Texture
    Signal Processing 93 3 (2013) 554-572     
  • Self-Similar Anisotropic Texture Analysis: The Hyperbolic Wavelet Transform Contribution
    IEEE Transactions on Image Processing 22 11 (2013) 4353-4363     
  • Coefficients dominants de la Transformée hyperbolique en ondelettes 2D : Application à l'analyse de textures invariantes d' ́echelle, multifractales et anisotropes
    XXIV colloque GRETSI - Traitement du Signal et des Images (2013) ID103     
  • When Van Gogh meets Mandelbrot: Multifractal classification of painting's texture
    Signal Processing (2013) pp. 554-572     
  • Methodology for Multifractal Analysis of Heart Rate Variability: From LF/HF Ratio to Wavelet Leaders
    32nd Int. Conf. of the IEEE Engineering in Medicine and Biology Society (2010)      
  • On the impact of the number of vanishing moments on the dependence structures of compound Poisson motion and fractional Brownian motion in multifractal time
    Lecture Notes in Statistics 200 (2010) 71-102     
  • Pointwise and directional regularity of nonharmonic Fourier series
    Applied and Computational Harmonic Analysis 22 3 (2010) 251-266     
  • Wavelet leaders and bootstrap for multifractal analysis of images
    Signal Processing 6 89 (2009) 1100-1114     
  • Pointwise smoothness of space-filling functions
    Applied and Computational Harmonic Analysis 26 2 (2009) 181-199     
  • Comprehensive multifractal analysis of turbulent velocity using wavelet leaders
    European Physical Journal B: Condensed Matter and Complex Systems 61 1 (2008) 201-215     
  • Wavelet decomposition of measures: Application to multifractal analysis of images
    NATO-ASI Conf. on Unexploded Ordnance Detection and Mitigation NATO (2008)      
  • Analyse multifractale d'image : l'apport des coefficients dominants.
    GRETSI 2007 (2007)      
  • The contribution of wavelets in multifractal analysis
    The Zuhai Conference on Wavelets and Applications (2007)      
  • Multifractal analysis of images: New connexions between analysis and geometry
    NATO Advanced Study Institute ; Imaging for Detection and Identification (2006) 169-194     
  • How smooth is almost every function in a Sobolev space?
    Revista Matemática Iberoamericana 22 (2006) 663-682     
  • The Sobolev embeddings are usually sharp
    Abstract and Applied Analysis 4 (2005) 437-448     
  • Wavelet Analysis of Fractal Boundaries. Part 2: Multifractal Analysis
    Communications in Mathematical Physics 258 (2005) 541-565     
  • Quelques propriétés génériques en analyse
    Comptes rendus de l'Académie des sciences. Série I, Mathématique 340 (2005) 645-651     
  • Wavelet analysis of fractal Boundaries, Part 1: Local regularity
    Communications in Mathematical Physics 258 (2005) 513-539     
  • Two results concerning chirps and 2-microlocal exponents prescription
    Applied and Computational Harmonic Analysis 5 4 (1998) 487-492     
Laboratoire d'Analyse et de Mathématiques Appliquées
Université Paris-Est - Créteil Val-de-Marne
61 avenue du Général de Gaulle
Bâtiment P
94010 Créteil