Stéphane JAFFARD
- Fiche
- Publications
Nom: | JAFFARD |
![]() |
Prénom: | Stéphane | |
Site: | UPEC | |
Bureau: | P2 234 | |
Téléphone: | +33 1 45 17 65 84 | |
Situation: | Permanent | |
Statut: | Professeur | |
Équipe de recherche: | Analyse harmonique | |
Courriel: | stephane.jaffard [at] u-pec.fr | |
Page personnelle: | http://perso.math.u-pem.fr/jaffard.stephane/ | |
Publications au sein du laboratoire
La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.
-
A Generalized Multifractal Formalism for the Estimation of Nonconcave Multifractal Spectra
-
Multivariate multifractal analysis
-
Multifractal formalisms for multivariate analysis
-
Sparse Time-Frequency Representation of Gravitational-Wave signals in Unions of Wilson Bases
-
Multifractal Characterization for Bivariate Data
-
P-leader multifractal analysis for text type identification
-
Evaluation of dental implant stability using ultrasonic characterization and multifractal analysisCongrès Français Mécanique (2017)
-
Finite-Resolution Effects in $p$ -Leader Multifractal Analysis
-
p-exponent and p-leaders, Part II: Multifractal Analysis. Relations to Detrended Fluctuation Analysis
-
Caractérisation de la Réponse Ultrasonore d’Implant Dentaire : Simulation Numérique et Analyse des Signaux13e Congrès Français Acoustique (2016)
-
Numerical simulations and multifractal signal processing used in ultrasonic characterization of bone-implant interface in case of dental implants14th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (2016)
-
p-exponent and p-leaders, Part I: Negative pointwise regularity
-
Hyperbolic wavelet leaders for anisotropic multifractal texture analysis
-
Generalized Legendre transform multifractal formalism for nonconcave spectrum estimation
-
Wove Paper Analysis through Texture Similarities
-
p-leader Multifractal Analysis and Sparse SVM for Intrapartum Fetal Acidosis Detection
-
Hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic fields
-
Multiscale Anisotropic Texture Analysis and Classification of Photographic Prints: Art scholarship meets image processing algorithms
-
Pitfall in Multifractal Analysis of Negative Regularity
-
Extending multifractal analysis to negative regularity: p-exponents and p-leaders
-
p-leader based classification of first stage intrapartum fetal HRV
-
Hyperbolic Wavelet Transform for Historic Photographic Paper Classification Challenge
-
Coefficients dominants de la Transformée hyperbolique en ondelettes 2D : Application à l'analyse de textures invariantes d' ́echelle, multifractales et anisotropesXXIV colloque GRETSI - Traitement du Signal et des Images (2013) ID103
-
When Van Gogh meets Mandelbrot: Multifractal classification of painting's texture
-
When Van Gogh meets Mandelbrot: Multifractal classification of painting's texture
-
Self-Similar Anisotropic Texture Analysis: The Hyperbolic Wavelet Transform Contribution
-
Methodology for Multifractal Analysis of Heart Rate Variability: From LF/HF Ratio to Wavelet Leaders32nd Int. Conf. of the IEEE Engineering in Medicine and Biology Society (2010)
-
On the impact of the number of vanishing moments on the dependence structures of compound Poisson motion and fractional Brownian motion in multifractal timeLecture Notes in Statistics 200 (2010) 71-102
-
Pointwise and directional regularity of nonharmonic Fourier series
-
Wavelet leaders and bootstrap for multifractal analysis of images
-
Pointwise smoothness of space-filling functions
-
Comprehensive multifractal analysis of turbulent velocity using wavelet leaders
-
Wavelet decomposition of measures: Application to multifractal analysis of images
-
Analyse multifractale d'image : l'apport des coefficients dominants.
-
The contribution of wavelets in multifractal analysis
-
Multifractal analysis of images: New connexions between analysis and geometry
-
How smooth is almost every function in a Sobolev space?Revista Matemática Iberoamericana 22 (2006) 663-682
-
Wavelet Analysis of Fractal Boundaries. Part 2: Multifractal Analysis
-
Quelques propriétés génériques en analyseComptes rendus de l'Académie des sciences. Série I, Mathématique 340 (2005) 645-651
-
Wavelet analysis of fractal Boundaries, Part 1: Local regularity
-
The Sobolev embeddings are usually sharpAbstract and Applied Analysis 4 (2005) 437-448
-
Two results concerning chirps and 2-microlocal exponents prescription

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Paris-Est - Créteil Val-de-Marne
Université Paris-Est - Créteil Val-de-Marne
61 avenue du Général de Gaulle
Bâtiment P
94010 Créteil