Stéphane JAFFARD

  • Fiche
  • Publications

Nom: JAFFARD
Prénom: Stéphane
Site: UPEC
Bureau: P2 234
Téléphone: +33 1 45 17 65 84
Situation: Permanent
Statut: Professeur
Équipe de recherche: Analyse harmonique
Courriel: stephane.jaffard [at] u-pec.fr
Page personnelle: http://perso.math.u-pem.fr/jaffard.stephane/
 

Publications au sein du laboratoire

La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.

  • Multivariate multifractal analysis
    Applied and Computational Harmonic Analysis 46 3 (2019) 653-663     
  • A Generalized Multifractal Formalism for the Estimation of Nonconcave Multifractal Spectra
    IEEE Transactions on Signal Processing 67 1 (2019) 110-119     
  • Hyperbolic wavelet leaders for anisotropic multifractal texture analysis
    IEEE International Conference on Image Processing (ICIP 2016) (2016) pp. 3558-3562     
  • Caractérisation de la Réponse Ultrasonore d’Implant Dentaire : Simulation Numérique et Analyse des Signaux
    13e Congrès Français Acoustique (2016)      
  • p-exponent and p-leaders, Part II: Multifractal Analysis. Relations to Detrended Fluctuation Analysis
    Physica A: Statistical Mechanics and its Applications 448 (2016) 319-339     
  • Hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic fields
    Revista Matemática Iberoamericana 31 1 (2015) 313-348     
  • Multiscale Anisotropic Texture Analysis and Classification of Photographic Prints: Art scholarship meets image processing algorithms
    IEEE Signal Processing Magazine 32 4 (2015) 18-27     
  • p-leader based classification of first stage intrapartum fetal HRV
    VI Latin American Congress on Biomedical Engineering (CLAIB 2014) (2014) pp. 504-507     
  • When Van Gogh meets Mandelbrot: Multifractal classification of painting's texture
    Signal Processing (2013) pp. 554-572     
  • When Van Gogh meets Mandelbrot: Multifractal classification of painting's texture
    Signal Processing (2013) pp. 554-572     
  • Self-Similar Anisotropic Texture Analysis: The Hyperbolic Wavelet Transform Contribution
    IEEE Transactions on Image Processing 22 11 (2013) 4353-4363     
  • On the impact of the number of vanishing moments on the dependence structures of compound Poisson motion and fractional Brownian motion in multifractal time
    Lecture Notes in Statistics 200 (2010) 71-102     
  • Pointwise smoothness of space-filling functions
    Applied and Computational Harmonic Analysis 26 2 (2009) 181-199     
  • Wavelet leaders and bootstrap for multifractal analysis of images
    Signal Processing 6 89 (2009) 1100-1114     
  • Comprehensive multifractal analysis of turbulent velocity using wavelet leaders
    The European Physical Journal B: Condensed Matter and Complex Systems 61 1 (2008) 201-215     
  • How smooth is almost every function in a Sobolev space?
    Revista Matemática Iberoamericana 22 (2006) 663-682     
  • Quelques propriétés génériques en analyse
    Comptes rendus de l'Académie des sciences. Série I, Mathématique 340 (2005) 645-651     
  • Wavelet analysis of fractal Boundaries, Part 1: Local regularity
    Communications in Mathematical Physics 258 (2005) 513-539     
  • Two results concerning chirps and 2-microlocal exponents prescription
    Applied and Computational Harmonic Analysis 5 4 (1998) 487-492     
Laboratoire d'Analyse et de Mathématiques Appliquées
Université Paris-Est - Créteil Val-de-Marne
61 avenue du Général de Gaulle
Bâtiment P
94010 Créteil