Dan GOREAC
- Fiche
- Publications
Nom: | GOREAC |
![]() |
Prénom: | Dan | |
Site: | UGE | |
Bureau: | 4B 015 | |
Téléphone: | +33 1 60 95 75 27 | |
Situation: | Détaché | |
Statut: | Maître de conférences | |
Équipe de recherche: | Probabilités et statistiques | |
Courriel: | dan.goreac [at] univ-eiffel.fr | |
Page personnelle: | http://goreac.eu/ | |
Publications au sein du laboratoire
La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.
-
Abel-type Results for Controlled Piecewise Deterministic Markov Processes
-
Nonequivalence of Controllability Properties for Piecewise Linear Markov Switch Processes
-
Controllability Issues for Randomly Switching Piecewise Linear Markov Processes
-
Controllability Metrics on Networks with Linear Decision Process-type Interactions and Multiplicative Noise
-
Optimality Issues for a Class of Controlled Singularly Perturbed Stochastic Systems
-
A Piecewise Deterministic Markov Toy Model for Traffic/Maintenance and Associated Hamilton-Jacobi Integrodifferential Systems on Networks
-
Approximate and Approximate Null-Controllability of a Class of Piecewise Linear Markov Switch Systems
-
Infection Time in Multistable Gene Networks. A Backward Stochastic Variational Inequality with Nonconvex Switch-Dependent Reflection Approach
-
Algebraic Invariance Conditions in the Study of Approximate (Null-)Controllability of Markov Switch Processes
-
A Note on General Tauberian-type Results for Controlled Stochastic Dynamics
-
Asymptotic Control for a Class of Piecewise Deterministic Markov Processes Associated to Temperate Viruses
-
Control Problems via occupational measuresPerpignan's Days on Applied Mathematics (2015)
-
Min-max control problems via occupational measures
-
Uniform Assymptotics in the Average Continuous Control of Piecewise Deterministic Markov Processes : Vanishing Approach
-
Controllability Properties of Linear Mean-Field Stochastic Systems
-
Existence of Asymptotic Values for Nonexpansive Stochastic Control Systems
-
Discontinuous control problems with state constraints : Linear formulations and dynamic programming principles
-
UNIFORM ASSYMPTOTICS IN THE AVERAGE CONTINUOUS CONTROL OF PIECEWISE DETERMINISTIC MARKOV PROCESSES : VANISHING APPROACHJournées SMAI 2013 45 (2013) 168-177
-
An LP Approach to Dynamic Programming Principles for Stochastic Control Problems with State Constraints
-
A note on linearization methods and dynamic programming principles for stochastic discontinuous control problems
-
Some applications of linear programming formulations in stochastic control
-
Linearization Techniques for Controlled Piecewise Deterministic Markov Processes; Application to Zubov's Method
-
Linearization techniques for $\mathbb{L}^{\infty}$-control problems and dynamic programming principles in classical and $\mathbb{L}^{\infty}$-control problems
-
Viability, invariance and reachability for controlled piecewise deterministic Markov processes associated to gene networks
-
A note on the controllability of jump diffusions with linear coefficients
-
A note on linearization techniques via occupational measures for deterministic and stochastic controlColloque Fédération Normandie- Mathématiques Edp-Normandie. Le Havre 2012 (2012) 133-142
-
Viability of stochastic semi-linear control systems via the quasi-tangency condition
-
Stochastic Optimal Control and Linear Programming Approach
-
Mayer and optimal stopping stochastic control problems with discontinuous cost
-
On Linearized Formulations for Control Problems with Piecewise Deterministic Markov DynamicsSeventh Congress of Romanian Mathematicians 5 54 (2011) 131-144
-
Discontinuous control problems for non-convex dynamics and near viability for singularly perturbed control systems
-
Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Gustave Eiffel
Université Gustave Eiffel
5 boulevard Descartes
Bâtiment Copernic
77420 Champs-sur-Marne