Nicolas FOURNIER
- Fiche
- Publications
Ancien membre
Nom: | FOURNIER |
![]() |
Prénom: | Nicolas | |
Site: | UPEC | |
Situation: | Permanent | |
Statut: | Professeur | |
Équipe de recherche: | Probabilités et statistiques | |
Publications au sein du laboratoire
La liste ci-dessous présente les publications du membre obtenues pendant sa présence au sein du laboratoire. Les données proviennent des serveurs de HAL ; il peut donc y avoir des oublis, des doublons ou des erreurs.
-
Rate of convergence of the Nanbu particle system for hard potentials
-
Finiteness of entropy for the homogeneous Boltzmann equation with measure initial condition
-
Propagation of chaos for the 2D viscous vortex model
-
On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes
-
One-dimensional general forest fire processesMémoires de la Société Mathématique de France 132 (2013) VI-138 p.
-
Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff
-
Smoluchowski's equation: rate of convergence of the Marcus-Lushnikov process
-
SIMULATION AND APPROXIMATION OF LEVY-DRIVEN STOCHASTIC DIFFERENTIAL EQUATIONS
-
Regularization properties of the 2D homogeneous Boltzmann equation without cutoff
-
STABILITY OF THE STOCHASTIC HEAT EQUATION IN L(1)([0,1])Electronic Communications in Probability 16 (2011) 337--352
-
Uniqueness of Bounded Solutions for the Homogeneous Landau Equation with a Coulomb Potential
-
A PURE JUMP MARKOV PROCESS WITH A RANDOM SINGULARITY SPECTRUM
-
Asymptotics of one-dimensional forest fire processes
-
Absolute continuity for some one-dimensional processes
-
On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity
-
On the invariant distribution of a one-dimensional avalanche process
-
Marcus-Lushnikov processes, Smoluchowski's and Flory's models
-
PARTICLE APPROXIMATION OF SOME LANDAU EQUATIONS
-
Stochastic coalescence with homogeneous-like interaction rates
-
Well-posedness of the spatially homogeneous Landau equation for soft potentials
-
On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity
-
A new regularization possibility for the Boltzmann equation with soft potentials
-
Smoothness of the law of some one-dimensional jumping SDEs with non-constant rate of jumpElectronic Journal of Probability 13 (2008)
-
Existence of densities for jumping S.D.E.s
-
Exact simulation of nonlinear coagulation processes
-
Convergence of the Marcus-Lushnikov Process

Laboratoire d'Analyse et de Mathématiques Appliquées
Université Paris-Est - Créteil Val-de-Marne
Université Paris-Est - Créteil Val-de-Marne
61 avenue du Général de Gaulle
Bâtiment P
94010 Créteil