Régularité des exposants de Lyapunov pour les cocycles quasi-périodiques de différentiabilité finie

Orateur: Claire CHAVAUDRET
Localisation: Institut de mathématiques de Jussieu, France
Type: Séminaire COOL
Site: Hors LAMA , IHP
Salle: Salle 01
Date de début: 22/02/2019 - 11:00
Date de fin: 22/02/2019 - 12:00

On s’intéresse à la régularité des exposants de Lyapunov de l’équation de Schrödinger linéaire quasi-périodique, ou plus généralement d’un cocycle à valeurs dans SL(2,C) au-dessus d’une rotation sur le tore. Le problème a été très étudié dans le cas d’un système de classe analytique, et l’on sait que les exposants de Lyapunov ont alors une dépendance 1/2-Hölder dans le cas où le vecteur des fréquences est diophantien, sauf au voisinage d’un système non uniformément hyperbolique.
Je présenterai un travail en commun avec Ao Cai, Jiangong You et Qi Zhou concernant les cocycles de différentiabilité finie mais assez grande, montrant qu’au voisinage d’un système presque réductible, si le vecteur des fréquences est diophantien, l’exposant de Lyapunov est encore 1/2-Hölder.