Université Paris-Est Université Paris-Est - Marne-la-Vallée Université Paris-Est - Créteil Val-de-Marne Centre National de la Recherche Scientifique

A new complexity function of repetition and irrationality exponents

20/05/2016 - 10:30
Dong Han Kim
Dongguk University
Corée du sud

We introduce and study a new complexity function in combinatorics on words, which takes into account the smallest return time of a factor of an infinite word. We characterize the eventually periodic words and the Sturmian words by means of this function. Then, we establish a new result on repetitions in Sturmian words and show that it is best possible.

We deduce a lower bound for the irrationality exponent of real numbers whose sequence of b-ary digits is a Sturmian sequence over $\{0,1,…,b−1\}$ and we prove that this lower bound is best possible. If the irrationality exponent of $\xi$ is equal to $2$ or slightly greater than $2$, then the $b$-ary expansion of $\xi$ cannot be `too simple', in a suitable sense. Our result applies, among other classical numbers, to badly approximable numbers, non-zero rational powers of $e$, and $\log(1+1/a)$, provided that the integer $a$ is sufficiently large. It establishes an unexpected connection between the irrationality exponent of a real number and its $b$-ary expansion.

This is joint work with Yann Bugeaud.