

Une nouvelle méthode de Monte-Carlo Accélérée : simulation directionnelle adaptative avec stratification de l'espace des directions.

GTR UPEMLV : 29/05/2009

J. Garnier, M. Munoz Zuniga

[miguel-externe.munoz-zuniga@edf.fr]

E. Remy, E. de Rocquigny, A. Arnaud

Table des matières (1/2)

- 1. Tenants et Aboutissants
 - 1.1 Objectifs du travail de thèse
 - **1.2** <u>Axes de présentation</u>

2. <u>Contexte</u>

- 2.1 Exemples de structures complexes à défaillance catastrophique
- 2.2 Cas de la centrale nucléaire
- 2.3 La cuve : un composant essentiel sous fortes contraintes
- 2.4 Problème type cuve
- 3. Les bases
 - 3.1 Méthodes MC accélérées : bref aperçu
 - 3.2 Stratification
 - 3.3 Passage à l'espace gaussien
 - 3.4 Simulation Directionnelle (SD)

Table des matières (2/2)

- 4. <u>Stratification directionnelle adaptative</u>
 - 4.1 <u>Illustration Graphique</u>
 - 4.2 Optimisation du nombre de tirages par strate
 - 4.3 <u>Tirages directionnelles 2-adaptatifs</u>
 - 4.4 <u>Résultats Numériques</u>
- 5. <u>Perspectives</u>

Tenants et Aboutissants

Concevoir et développer mathématiquement des méthodes de simulations stochastiques :

- Robustes (Intervalles de confiances)
- Rapides (Modèle à temps de calcul élevé)
- Adaptées à l'estimation de faibles probabilités

Dans le but :

- D'estimer efficacement la probabilité de défaillance de structures « fiables mais sensibles » d'unités de production d'électricité (la cuve d'une centrale nucléaire)
- De réutiliser cette méthode sur d'autres composants ou problématiques

Contexte

1) Composant complexe à défaillance catastrophique
 2) Cuve de la centrale nucléaire
 3) Présentation du problème
 4) Présentation de notre réponse

Exemples de structures complexes à défaillance catastrophique

Existence de multiples structures complexes à défaillance aux conséquences catastrophiques : Jumbo Jet, barrage, plate-forme marine, centrale nucléaire...

2.3 La cuve : un composant essentiel sous fortes contraintes

Situation normale :

- Contrainte de pression : 155 bar
- Irradiation de la cuve

Situation extrême :

- Micro-défaut de fabrication
- Choc thermique : injection de liquide de refroidissement à environ 10°C dans un liquide à environ 300°C

Quelles est la probabilité de défaillance dans ce cas extrême ?

Quelles sont les caractéristiques de ce genre de problèmes ?

9

Table des matières

- Estimation contrôlée de faibles probabilités sur des modèles physiques complexes-

Table des matières

ROD

2.5 Axes de la présentation

Présentation d'une nouvelle méthode de simulation présentant :

- Les avantages de la méthode de simulation directionnelle et de la méthode de stratification
- Les avantages d'une méthode adaptative à 2 étapes non-séquentielle permettant une parallélisation partielle
- Des résultats avec contrôle sur l'erreur d'estimation

Les Bases

1) Méthodes FORM-SORM
 2) Méthode de Monte Carlo standard
 3) Méthodes de Monte Carlo accélérées

 4) Méthode de Stratification
 5) Méthode de Simulation Directionnelle

- Efficacité dépend de la géométrie de la surface de défaillance
- Pas de contrôle de l'erreur
- Problème lié à la recherche du design point (convergence de l'algorithme non garantie)
- Problème lié à l'existence de plusieurs design points

- Estimation contrôlée de faibles probabilités sur des modèles physiques complexes -

Table des matières

ROD

Méthode de Monte Carlo standard 3.2

1) La loi forte des grands nombres

Intervalle de confiance

$$\left[\hat{P}_{f}^{N}-z_{\alpha}\frac{\sigma}{\sqrt{N}};\hat{P}_{f}^{N}+z_{\alpha}\frac{\sigma}{\sqrt{N}}\right]$$

Analyse :

- Pas d'hypothèse de régularité
- Contrôle de l'estimation
- Temps de calcul proportionnel au
- nombre de tirages Si $P_f = 10^{-k}$ besoin de $N = 10^{k+2}$ tirages pour avoir un coefficient de variation de 10% (k suffisamment grand)

Table des matières

ROD

3.1 Méthodes MC accélérées : bref aperçu

Tirage sur maillage

William W

Monte Carlo standard

Hypercube Latin

Stratification

Simulation directionnelle

Table des matières

3.3 Passage à l'espace gaussien

Stratification Directionnelle Adaptative

1) Illustration graphique du principe
 2) Expression du problème et optimisation
 3) Présentation générale de 2-SDA
 4) Étude des estimateurs proposés
 5) Choix des estimateurs pertinents
 6) Généralisation : L-SDA

4.2 Stratification dans l'espace directionnel
(1/4)

$$I = E(F(U)) = E\left[F\left(||U||\frac{|U||}{||U||}\right)\right] = E[F(RA)]$$

$$R: R^{2} \approx \chi_{p}^{2} \qquad A \approx U(S_{p})$$

$$= \sum_{i=1}^{m} P(A \in q_{i}) \times E\left[F(RA^{i})\right]$$

$$A^{i} \approx \ell(A|A \in q_{i})$$

$$= \sum_{i=1}^{m} \rho_{i} E\left[E(F(RA_{i})|A_{i})\right]$$

$$= \sum_{i=1}^{m} \rho_{i} E\left[\xi(A_{i}^{i})\right)$$
Il faut être capable de calculer ce terme

$$\hat{I} = \sum_{i=1}^{m} \frac{\rho_{i}}{n_{i}} \sum_{j=1}^{n_{i}} \xi(A_{j}^{i})$$

$$E(\hat{I}) = I$$

$$V_{ar}(\hat{I}) = \sum_{i=1}^{m} \frac{\rho_{i}^{2} V_{i}}{n_{i}}$$

$$V_{i} = Var(\xi(A_{j}^{i}))$$

4.2 Estimateurs proposés (2/4)

Avec recyclage :

$$\hat{I}_{r}^{2SDA} = \sum_{i=1}^{m} \frac{\rho_{i}}{f_{1}(n)w_{i} + f_{2}(n)\widetilde{W}_{i}} \sum_{j=1}^{f_{1}(n)w_{i} + f_{2}(n)\widetilde{W}_{i}} \sum_{j=1}^{f_{1}(n)w_{i}} \sum_{j=$$

Sans recyclage :

$$\hat{I}_{nr}^{2SDA} = \sum_{i=1}^{m} \frac{\rho_i}{f_2(n)\tilde{W}_i} \sum_{j=1}^{f_2(n)\tilde{W}_i} \xi(A_j^i)$$

4.2 Optimisation du nombre de tirages par strate (4/4)

2000 A

4.3 Stratification directionnelle 2adaptative

- (1) On commence par choisir $f_1(n)$ et le pourcentage de tirages par quadrant W_i a priori
- (2) On réalise un premier jeu de simulations dans chaque quadrant avec les $f_1(n)_{W_i}$ premiers tirages par quadrant $f_1(n)_{W_i}$
- (3) On estime la proportion de tirages optimum par strate \widetilde{W}_i avec les $\lfloor f_1(n) w_i \rfloor$ premiers tirages

- (4) On estime la probabilité de défaillance par stratification directionnelle classique avec les $\widetilde{W_i}$ estimés
 - lci se pose la question du recyclage ou non recyclage des $f_1(n)$ premières simulations : plusieurs estimateurs sont proposés

 $V_i = \frac{1}{f_i(n)w_i}$

Table des matières

ROD

4.4 Étude estimateur avec recyclage (1/4)

$$\frac{\text{Avec recyclage}}{\hat{I}_{r}^{2SDA}} = \sum_{i=1}^{m} \frac{\rho_{i}}{f_{1}(n)w_{i} + f_{2}(n)\widetilde{W}_{i}} \sum_{j=1}^{f_{1}(n)w_{i} + f_{2}(n)\widetilde{W}_{i}} \sum_{j=1}^{m} \xi(A_{j}^{i})$$

$$\frac{1}{\sigma_{i}} \sum_{j=1}^{m} \frac{1}{\sigma_{i}} \sum_{j=1}^{m} \frac{1}{\sigma_{i}$$

Variance conditionnelle aux premiers tirages

$$Var(\hat{I}_{r}^{2SDA}|A_{n_{1}:n_{m}}) = \sum_{i=1}^{m} \frac{\rho_{i}^{2}\sigma_{i}^{2}}{f_{1}(n)\beta_{i} + f_{2}(n)\widetilde{W}_{i}^{r}}$$

4.4 Étude estimateur avec recyclage (2/4)

Résultat asymptotique : $f_1(n) = o(f_2(n))$

$$\sqrt{n}(\hat{I}_r^{2SDA} - I) \xrightarrow{n \to +\infty} N(0, \sigma_{opt_1}^2)$$

Résultat asymptotique :

$$f_1(n) = O(f_2(n)) = \gamma n$$

$$\sqrt{n}(\hat{I}_r^{2SDA} - I) \xrightarrow{n \to +\infty} N(0, \sigma_{opt_1}^2) \qquad \forall i \in \{1, \dots, m\} \\ w_i^{opt_2} > \gamma w_i$$

$$\sqrt{n}(\hat{I}_r^{2SDA}-I) \xrightarrow{n \to +\infty} N(0,\sigma_{opt_2}^2)$$

4.4 Étude estimateur avec recyclage (4/4)

Résultat asymptotique

 $f_1(n) = o(f_2(n))$

$$\sqrt{n} (\hat{I}_{nr}^{2SDA} - I) \xrightarrow{n \to +\infty} N(0, \sigma_{opt_1}^2)$$

Résultat asymptotique

 $f_1(n) = O(f_2(n)) = \gamma n$

$$\sqrt{n} (\hat{I}_{nr}^{2SDA} - I) \xrightarrow{n \to +\infty} N(0, \frac{\sigma_{opt_1}^2}{1 - \gamma})$$

4.5 Choix des estimateurs pertinents

Conclusion :

L'estimateur avec recyclage est biaisé avec un biais difficile à corriger L'ordre de grandeur du nombre de simulations réalisable étant faible, on ne peut considérer ce biais négligeable

Il paraît donc plus raisonnable d'**utiliser dans notre cadre l'estimateur sans recyclage** Nous perdrons certes un facteur sur la variance, mais celui-ci pourra être négligeable au vu de la précision recherchée

On peut proposer des intervalles de confiance via une estimation empirique de la variance

4.6 Stratification directionnelle L-adaptative et ∞-adaptative (1/5)

• Apprentissage "continu" :

On fixe le nombre d'étapes d'adaptation et on effectue une étude asymptotique en n (nombre total de simulations)

On effectue une étude asymptotique en n et en nombre d'étapes d'adaptation

4.6 Stratification directionnelle L-adaptative et ∞-adaptative (2/5)

f₁(n)

f_k(n)

- (1) On commence par choisir $f_k(n)$ (et le pourcentage de tirages par quadrant $\widetilde{W}_i^1 = w_i$ a priori)
- (2) On réalise un jeu de simulations dans chaque quadrant avec les $[f_k(n)\widetilde{W}_i^k]$ tirages par quadrant
- (3) On estime la proportion de tirages optimum par strate \widetilde{W}_{i}^{k+1} avec les $\left[f_{k}(n)\widetilde{W}_{i}^{k}\right]$ tirages (recyclage possible) et on réitère

(4) On estime la probabilité de défaillance par stratification directionnelle classique avec les \widetilde{W}_i^L estimés

 $f_{L}(n)$

. . .

n

4.6 Stratification directionnelle L-adaptative et ∞-adaptative (5/5)

Conclusion:

Le cadre L-adaptatif pour L > 2 est trop coûteux en appels à la fonction de défaillance

De plus, le fait que les **strates** soient **fixes** ne permet pas de tirer totalement profit d'une multi-adaptation Avec notre choix de strates fixes, nous constatons que L-SDA pour L > 2 n'apporte pas de nette amélioration sur l'estimation

2-SDA : applications

Exemple académique
 Application au modèle "Crue"
 Application au modèle "Cuve3D"

5.1 Résultats numériques sur une surface de défaillance hyperplane

S.R 5.1 Résultats numériques sur une surface det défaillance hyperplane

Estimateur sans recyclage

R 5.1 Résultats numériques sur une surface de défaillance hyperplane

Estimateur avec recyclage

5.1 Résultats numériques sur une surface de défaillance hyperplane

Même étude pour les hyperplans suivant :

L=2 p=3 Pdef=10^{-6} Nbre itération = 1000 Kopt Nbre AG = 800 à 9000 En moyenne, 8 AG par direction

Nous allons comparer les résultats obtenus par les méthodes suivantes :

- Monte Carlo standard
- Réduction de la dimension, par rapport soit à Q, soit à Ks
- Simulation Directionnelle
- 2-SDA
- Tirage d'importance : tirages gaussiens autour du point de conception (FORM)

ROD

Remarque \rightarrow pour la suite : AG = Appels à la fonction de déf. G

5.2 Modèle "Crue" : illustration du caractère asymptotique (1/2)

On réalise <u>c = 1000 calculs de notre estimateur</u> avec <u>n = 1000 directions simulées</u> (200-800) On peut ainsi avoir une bonne idée de la vraie variance de notre estimateur et la comparer à la variance asymptotique optimum que nous avons déterminée pour une allocation optimum des tirages directionnels par strate

5.2 2-SDA : résultats numériques "Crue" (1/2)

	Méthode	Nbre appels à G	Probabilité de défaillance estimée	Coefficient de variation (en %)	
Pire		10 000	0.85x10 ⁻²	10.8	
Meilleure	Monte Carlo standard	100 000	1.14x10 ⁻²	2.94	
		1 000 000	1.16x10 ⁻²	0.922	
		10 000 (2800)	1.13x10 ⁻²	5.89	
	SD	100 000 (27300)	1.20x10 ⁻²	1.87	
		1 000 000 (274000)	1.18x10 ⁻²	0.590	
		10 000	1.16x10 ⁻²	4	
	Reduction de la dimension	100 000	1.16x10 ⁻²	1.27	
	partapport a ris	1 000 000	1.17x10 ⁻²	0.409	
	Díduction de la dimension	10 000	1.16x10 ⁻²	3.66	
	Reduction de la dimension	100 000	1.19x10 ⁻²	1.17	
		1 000 000	1.17x10 ⁻²	0.376	
		10 000 (600-1900)	1.18x10 ⁻²	2.80	
	2-SDA	100 000 (1000-13500)	1.17x10 ⁻²	0.88	
		1 000 000 (50000-200000)	1.18x10 ⁻²	0.281	
	Tine of alliers of the set (autour	10 000	1.18x10 ⁻²	1.73	
	du point de conception)	100 000	1.19x10 ⁻²	0.56	
		1 000 000	1.17x10 ⁻²	0.181	

Remarque : On a environ N.A.G = 6.8xN.S, donc en moyenne 6.8 appels par direction pour SDA Ici on pourrait coupler réduction de la dimension avec SDA

Table des matières

5.2 2-SDA : résultats numériques "Crue" (2/2)

Attention : pas encore en asymptotique

			/			
Modèle		Méthode	Nbre appels à G	₩ I.C à 95%	L.I.C à 95%	
	2	2-SDA (s.r)	494 (32-48)	[5.50x10 ⁻³ ; 1.41x10 ⁻²]	8.00x10 ⁻³	
Crue			Min : 288	[1.61x10 ⁻³ ; 2.40x10 ⁻²]	Min : 1.50x10 ⁻³	
			Max : 773	[4.97x10 ⁻³ ; 2.16x10 ⁻²]	Max : 1.57x10 ⁻²	

- Ordre de grandeur de la probabilité estimée correcte vis-à-vis du faible nombre de simulations - résultat équivalent à un calcul FORM-SORM en termes d'ordre de grandeur
- Mais forte variabilité due au faible nombre de tirages : l'intervalle de confiance n'est pas totalement à 95%

5.3 2-SDA : résultats numériques "Cuve3D"

 Application numérique (p = 3 variables aléatoires – K_{lc} Weibull, hauteur 2a Weibull et distance à l'interface uniforme / APRP GB) :

	Modèle	Méthode	Nbre appels à G	I.C à 95%	L.I.C à 95%	
Modèl	es ^c et rêsul	tats numeriques prés	entés ⁷ å (fitre ^{®)} d'ex	ploration [®] scientifiqu	ıe,⁰n িê× p͡ðuv	ant en
	aucun ca	s être utilisés pour tir e	er des conclusio	ns sur la sûreté des	ouvrages	
	Cuve3D	2-SDA (s.r)	878 (70-130)	[5.28x10 ⁻⁶ ; 9.65x10 ⁻⁶]	4.73x10 ⁻⁶	
La p	Cuve <u>3</u> D robabilité	de défaillance étudiée	étant conditionr	[4.5x10 ⁻⁶ ; 1.18x10 ⁻⁵]]elle à un événemen	7.31x10 ⁻⁶ t initiateur	dont
l'ordre (de grander Cuve3D	ur conventionnel de pr probabilitês présentée	obabilité d'occu es d oi ∜ent⁰être m	rrence est < 10 ⁻⁴ , to ultiphées [:] þáŕ×áutan	utes les va t ^{6.49x10⁻⁶}	leurs de
	Cuve3D	SD	3300 (2000)	[6.08x10 ⁻⁶ ; 1.15x10 ⁻⁵]	5.70x10 ⁻⁶	

toutes les probabilités doivent être multipliées par 10-4

ROD

- Ordre de grandeur de la probabilité estimée correcte vis-à-vis du faible nombre de simulations résultat équivalent à un calcul FORM-SORM en termes d'ordre de grandeur
- Pour une même longueur d'intervalle de confiance, SDA permet de réduire d'un facteur 5 le nombre d'appels à la fonction de défaillance par rapport à SD
- Mais forte variabilité due au faible nombre de tirages : l'intervalle de confiance n'est pas totalement à 95%
 Table des matières

Perspective

- Etude bootstrap
- Méthode estimations à noyaux

2-SDA : Point de vue tirage préférentiel

$$P_f = E(1_{g(RA)<0}) = E\left(E(1_{g(RA)<0}|A)\right) = E\left(\xi(A)\right)$$

On a un terme de Variance supplémentaire par rapport à la variance de notre méthode ! Conséquence du faite que dans cette procédure l'allocation par strate est en moyenne wi et non pas exactement wi

ROD

SDA avec regroupement et divisions des strates

2 étapes d'adaptation on regroupe uniquement :

ROD

L étapes d'adaptation on regroupe et divise strates :

3 juin 2009 M

74

Miguel Munoz Zuniga

Étude Stratification : un angle

(p=2, m=2, pdef= 10⁻⁶)

W fixé Optimisation en α : càd trouver le qui minimise la variance asymtotique optimum • $\alpha \in [0, 2\pi]$

Minimiser : $\sigma_{opt}^{2}(\alpha) = \frac{1}{4} \left(\sqrt{V_{1}(\alpha)} + \sqrt{V_{2}(\alpha)} \right)^{2} - \sigma_{opt}^{2} = \frac{1}{m^{2}} \left(\sum_{i=1}^{m} \sqrt{v_{i}} \right)^{2}$

$$V_{1}(\alpha) = \begin{cases} \frac{1}{\pi} \int_{\alpha-\pi}^{\alpha} I_{j0,\pi [}(\theta) exp\left(-\frac{K^{2}}{\sin^{2}(\theta)}\right) d\theta \\ -\left(\frac{1}{\pi} \int_{\alpha-\pi}^{\alpha} I_{j0,\pi [}(\theta) exp\left(-\frac{K^{2}}{2\sin^{2}(\theta)}\right) d\theta\right)^{2} \end{cases}$$

$$V_{2}(\alpha) = \begin{cases} \frac{1}{\pi} \int_{\alpha}^{\alpha+\pi} (I_{j0,\pi l}(\theta) + I_{j2\pi,3\pi l}(\theta)) \exp\left(-\frac{K^{2}}{\sin^{2}(\theta)}\right) d\theta \\ -\left(\frac{1}{\pi} \int_{\alpha}^{\alpha+\pi} (I_{j0,\pi l}(\theta) + I_{j2\pi,3\pi l}(\theta)) \exp\left(-\frac{K^{2}}{2\sin^{2}(\theta)}\right) d\theta \right)^{2} \end{cases}$$

$$(7) \quad \text{Miguel Munoz Zuniga}$$

Étude Stratification : un angle (p=2, m=2, pdef= 10⁻⁶)

Variance asymptotique optimum en fonction de alpha

Étude Stratification : deux angles (p=2, m=2, pdef= 10⁻⁶)

Résultats Numériques Crue : 2-SDA

Modèle :

$$G(Zv,Q,Ks,Zm) = Hd + Zb - Zv - \left(\frac{Q}{B \times Ks \times \sqrt{\frac{Zm - Zv}{L}}}\right)^{3/5}$$

- 1. Nous allons comparer la variance asymptotique attendue à la vraie variance de notre estimateur 2-SDA
- Le critère d'arrêt étant valable pour des probabilités faibles nous allons déterminer numériquement le nombre raisonnable d'étapes de dichotomie à réaliser.
 Ce qui nous permettra de voir également la sensibilité de l'estimation au nombre d'appels à la fonction de défaillance.
- 3. Nous allons comparer les résultats obtenus par les méthodes suivantes :
 - Monte-Carlo Standard
 - Réduction de la dimension par rapport soit à Q soit à Ks
 - Simulation Directionnelle
 - 2-SDA
 - Tirage d'importance : tirages gaussiens autour du point de conception (FORM)
 - 'Chen-method'

Annexe : résultats asymptotiques supplémentaires

William W

Hypothèses de régularité

Annexe : zéros

	Méthode	Ordre
	Dichotomie	1
	Sécante	1,618
Inte	rpolation quadratique inverse	/
	Brent	/

back <u>Table des matières</u>

Annexe : monotonie et simulation directionnelle

- 1. Sans autre hypothèse que la monotonie globale, aucune prévision sur le nombre de racines sauf dans le cadran « N-E »
- La monotonie globale nous permet d'envisager une sélection des directions à explorer afin d'éviter des recherches de zéros inutiles et coûteuses

