# Temps d'atteinte, processus gamma et covariables

#### Laurent Bordes, Christian Paroissin & Ali Salami

Laboratoire de Mathématiques et de leurs Applications Université de Pau et des Pays de l'Adour

23/01/2009

Modèle

Temps d'atteinte

Conclusions et perspectives

### Modèle de dégradation

avec des covariables dépendantes du temps

### Rappel sur le processus gamma

#### Définition

Soit  $\xi \in \mathbb{R}_+$  et  $\eta = (\eta_t)_{t \geqslant 0}$  une fonction réelle croissante tq  $\eta_0 = 0$ .  $(D_t)$  est un processus gamma de paramètres  $(\xi, \eta)$  ssi

- 1.  $D_0 = 0$
- 2. les accroissements de  $(D_t)$  sont indépendants
- 3. les accroissements  $D_{t+\delta} D_t$  de  $(D_t)$  sont de loi gamma de paramètres  $(\xi, \eta_{t+\delta} \eta_t)$

### Rappel sur le processus gamma

#### Définition

Soit  $\xi \in \mathbb{R}_+$  et  $\eta = (\eta_t)_{t \geqslant 0}$  une fonction réelle croissante tq  $\eta_0 = 0$ .  $(D_t)$  est un processus gamma de paramètres  $(\xi, \eta)$  ssi

- 1.  $D_0 = 0$
- 2. les accroissements de  $(D_t)$  sont indépendants
- 3. les accroissements  $D_{t+\delta} D_t$  de  $(D_t)$  sont de loi gamma de paramètres  $(\xi, \eta_{t+\delta} \eta_t)$

#### Densité de $D_t$ :

$$f_{D_t}(x) = \frac{1}{\xi \Gamma(\eta_t)} \left(\frac{x}{\xi}\right)^{\eta_t - 1} e^{-x/\xi} \mathbf{1}_{\mathbb{R}^+}(x)$$

#### Exemple

1. Cas linéaire :  $\eta_t = \alpha t$ . Processus à accroissements stationnaires (processus de Lévy).

#### Exemple

- 1. Cas linéaire :  $\eta_t = \alpha t$ . Processus à accroissements stationnaires (processus de Lévy).
- 2. Cas non-linéaire 1 :  $\eta_t = \alpha t^{\beta}$

#### Exemple

- 1. Cas linéaire :  $\eta_t = \alpha t$ . Processus à accroissements stationnaires (processus de Lévy).
- **2**. Cas non-linéaire 1 :  $\eta_t = \alpha t^{\beta}$
- 3. Cas non-linéaire 2 :  $\eta_t = \beta_0 (1 y_0^{\beta_2} \beta_1 \beta_2 t)^{-\beta_2^{-1}}$ , courbe de Paris-Erdogan (Lawless & Crowder, 2004)

#### Quelques modèles proposés :

• Singpurwalla (1995)

- Singpurwalla (1995)
- Bagdonavicius & Nikulin (2001) : modèle de vie accélérée
   t → te<sup>x' b</sup>

- Singpurwalla (1995)
- Bagdonavicius & Nikulin (2001) : modèle de vie accélérée t → te<sup>x'b</sup>
- Lawless & Crowder (2004) : ξ aléatoire et dépend de covariables x

- Singpurwalla (1995)
- Bagdonavicius & Nikulin (2001) : modèle de vie accélérée t → te<sup>x'b</sup>
- Lawless & Crowder (2004) : ξ aléatoire et dépend de covariables x
- Zhao et al. (2009)

#### Description du modèle :

Covariables

- Covariables
  - deux états possibles : 0 (conditions normales) et 1 (forte sollicitation)

- Covariables
  - deux états possibles : 0 (conditions normales) et 1 (forte sollicitation)
  - dynamique markovienne (Z<sub>t</sub>):

- Covariables
  - deux états possibles : 0 (conditions normales) et 1 (forte sollicitation)
  - dynamique markovienne ( $Z_t$ ) : processus markovien de saut sur  $\{0,1\}$

- Covariables
  - deux états possibles : 0 (conditions normales) et 1 (forte sollicitation)
  - dynamique markovienne (Z<sub>t</sub>): processus markovien de saut sur {0,1} ⇒ sachant Z<sub>0</sub> = 0, loi de Z<sub>t</sub> = loi de Bernoulli de paramètre p<sub>t</sub>:

$$p_t = \mathbb{P}[Z_t = 1 \,|\, Z_0 = 0] = \frac{\lambda}{\lambda + \mu} \left( 1 - e^{-(\lambda + \mu)t} \right)$$

#### Description du modèle :

- Covariables
  - deux états possibles : 0 (conditions normales) et 1 (forte sollicitation)
  - dynamique markovienne (Z<sub>t</sub>): processus markovien de saut sur {0,1} ⇒ sachant Z<sub>0</sub> = 0, loi de Z<sub>t</sub> = loi de Bernoulli de paramètre p<sub>t</sub>:

$$p_t = \mathbb{P}[Z_t = 1 \,|\, Z_0 = 0] = \frac{\lambda}{\lambda + \mu} \left( 1 - e^{-(\lambda + \mu)t} \right)$$

Dégradation :

- Covariables
  - deux états possibles : 0 (conditions normales) et 1 (forte sollicitation)
  - dynamique markovienne (Z<sub>t</sub>): processus markovien de saut sur {0, 1} ⇒ sachant Z<sub>0</sub> = 0, loi de Z<sub>t</sub> = loi de Bernoulli de paramètre p<sub>t</sub>:

$$p_t = \mathbb{P}[Z_t = 1 \,|\, Z_0 = 0] = \frac{\lambda}{\lambda + \mu} \left( 1 - e^{-(\lambda + \mu)t} \right)$$

- Dégradation :
  - conditions normales : processus gamma de paramètre  $(\xi,\eta_t)$

#### Description du modèle :

#### Covariables

- deux états possibles : 0 (conditions normales) et 1 (forte sollicitation)
- dynamique markovienne (Z<sub>t</sub>): processus markovien de saut sur {0, 1} ⇒ sachant Z<sub>0</sub> = 0, loi de Z<sub>t</sub> = loi de Bernoulli de paramètre p<sub>t</sub>:

$$p_t = \mathbb{P}[Z_t = 1 \,|\, Z_0 = 0] = \frac{\lambda}{\lambda + \mu} \left( 1 - e^{-(\lambda + \mu)t} \right)$$

#### Dégradation :

- conditions normales : processus gamma de paramètre  $(\xi, \eta_t)$
- forte sollicitation : processus gamma de paramètre (ξ, η<sub>bt</sub>) avec b ≥ 1

•  $(T_n)$  instants de sauts du processus  $(Z_t)$ 

- $(T_n)$  instants de sauts du processus  $(Z_t)$
- Processus (D<sub>t</sub>) de dégradation :

- $(T_n)$  instants de sauts du processus  $(Z_t)$
- Processus (D<sub>t</sub>) de dégradation :

$$D_t = \sum_{k=1}^n (D_{T_k} - D_{T_{k-1}}) + (D_t - D_{T_n}) ,$$

si 
$$T_n \leqslant t < T_{n+1}$$

- $(T_n)$  instants de sauts du processus  $(Z_t)$
- Processus (D<sub>t</sub>) de dégradation :

$$D_t = \sum_{k=1}^n (D_{T_k} - D_{T_{k-1}}) + (D_t - D_{T_n}) ,$$

si 
$$T_n \leqslant t < T_{n+1}$$

• Conditionnellement à  $(T_n)$ ,  $D_{T_k} - D_{T_{k-1}}$  est une va de loi gamma :

- $(T_n)$  instants de sauts du processus  $(Z_t)$
- Processus (D<sub>t</sub>) de dégradation :

$$D_t = \sum_{k=1}^n (D_{T_k} - D_{T_{k-1}}) + (D_t - D_{T_n}) ,$$

si 
$$T_n \leqslant t < T_{n+1}$$

- Conditionnellement à (T<sub>n</sub>), D<sub>T<sub>k</sub></sub> D<sub>T<sub>k-1</sub></sub> est une va de loi gamma :
  - de paramètre  $(\xi, \eta_{T_k} \eta_{T_{k-1}})$  si k impair

- $(T_n)$  instants de sauts du processus  $(Z_t)$
- Processus (D<sub>t</sub>) de dégradation :

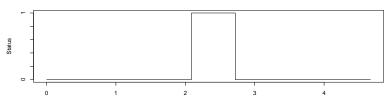
$$D_t = \sum_{k=1}^n (D_{T_k} - D_{T_{k-1}}) + (D_t - D_{T_n}) ,$$

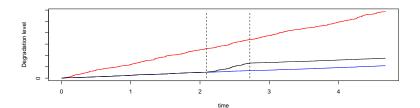
si 
$$T_n \leqslant t < T_{n+1}$$

- Conditionnellement à  $(T_n)$ ,  $D_{T_k} D_{T_{k-1}}$  est une va de loi gamma :
  - de paramètre  $(\xi, \eta_{T_k} \eta_{T_{k-1}})$  si k impair
  - de paramètre  $(\xi, \eta_{bT_k} \eta_{bT_{k-1}})$  sinon

#### Exemple de simulation

Gamma process with binary Markovian covariates





Temps d'atteinte d'un niveau fixe ou aléatoire

 Temps d'atteinte d'un niveau fixe c > 0 ou aléatoire C par le processus de dégradation :

$$T_c = \inf\{t \geqslant 0 ; D_t \geqslant c\}$$

 Temps d'atteinte d'un niveau fixe c > 0 ou aléatoire C par le processus de dégradation :

$$T_c = \inf\{t \geqslant 0 ; D_t \geqslant c\}$$

• (*D<sub>t</sub>*) : trajectoires croissantes

$$\forall t \geqslant 0$$
,  $\mathbb{P}[T_c > t] = \mathbb{P}[D_t < c]$ 

 Temps d'atteinte d'un niveau fixe c > 0 ou aléatoire C par le processus de dégradation :

$$T_c = \inf\{t \geqslant 0 ; D_t \geqslant c\}$$

• (*D<sub>t</sub>*) : trajectoires croissantes

$$\forall t \geqslant 0 , \quad \mathbb{P}[T_c > t] = \mathbb{P}[D_t < c]$$

Trois cas étudiées :

 Temps d'atteinte d'un niveau fixe c > 0 ou aléatoire C par le processus de dégradation :

$$T_c = \inf\{t \geqslant 0 ; D_t \geqslant c\}$$

(D<sub>t</sub>): trajectoires croissantes

$$\forall t \geqslant 0 , \quad \mathbb{P}[T_c > t] = \mathbb{P}[D_t < c]$$

- Trois cas étudiées :
  - Absence de covariables

 Temps d'atteinte d'un niveau fixe c > 0 ou aléatoire C par le processus de dégradation :

$$T_c = \inf\{t \geqslant 0 ; D_t \geqslant c\}$$

(D<sub>t</sub>): trajectoires croissantes

$$\forall t \geqslant 0 \;, \quad \mathbb{P}[T_c > t] = \mathbb{P}[D_t < c]$$

- Trois cas étudiées :
  - Absence de covariables
  - Un seul saut ( $\mu = 0$ )

 Temps d'atteinte d'un niveau fixe c > 0 ou aléatoire C par le processus de dégradation :

$$T_c = \inf\{t \geqslant 0 ; D_t \geqslant c\}$$

(D<sub>t</sub>): trajectoires croissantes

$$\forall t \geqslant 0 \;, \quad \mathbb{P}[T_c > t] = \mathbb{P}[D_t < c]$$

- Trois cas étudiées :
  - Absence de covariables
  - Un seul saut ( $\mu = 0$ )
  - Cas général stationnaire

•  $\Gamma(\cdot)$ : fonction gamma

- $\Gamma(\cdot)$  : fonction gamma
- $\Gamma(\cdot,\cdot)$  : fonction gamma incomplète supérieur

- $\Gamma(\cdot)$  : fonction gamma
- $\Gamma(\cdot,\cdot)$  : fonction gamma incomplète supérieur
- $\gamma(\cdot,\cdot)$  : fonction gamma incomplète inférieur

- $\Gamma(\cdot)$  : fonction gamma
- Γ(·,·): fonction gamma incomplète supérieur
- $\gamma(\cdot,\cdot)$  : fonction gamma incomplète inférieur
- $\Psi(\cdot)$  : fonction digamma ou dérivée logarithmique de  $\Gamma(\cdot)$

- Γ(·): fonction gamma
- $\Gamma(\cdot,\cdot)$  : fonction gamma incomplète supérieur
- $\gamma(\cdot,\cdot)$  : fonction gamma incomplète inférieur
- $\Psi(\cdot)$  : fonction digamma ou dérivée logarithmique de  $\Gamma(\cdot)$
- pFq: fonction hypergéometrique généralisée

$$_{p}F_{q}(a_{1},\ldots,a_{p};b_{1},\ldots,b_{q};z)=\sum_{k=0}^{\infty}\frac{(a_{1})_{k}\cdots(a_{p})_{k}}{(b_{1})_{k}\cdots(b_{q})_{k}}\frac{z^{k}}{k!},$$

où  $(x)_n = \Gamma(x+n)/\Gamma(x)$  (symbole de Pochammer)

- $\Gamma(\cdot)$  : fonction gamma
- $\Gamma(\cdot,\cdot)$  : fonction gamma incomplète supérieur
- $\gamma(\cdot,\cdot)$  : fonction gamma incomplète inférieur
- $\Psi(\cdot)$  : fonction digamma ou dérivée logarithmique de  $\Gamma(\cdot)$
- pFq: fonction hypergéometrique généralisée

$$_{p}F_{q}(a_{1},\ldots,a_{p};b_{1},\ldots,b_{q};z)=\sum_{k=0}^{\infty}\frac{(a_{1})_{k}\cdots(a_{p})_{k}}{(b_{1})_{k}\cdots(b_{q})_{k}}\frac{z^{k}}{k!},$$

où 
$$(x)_n = \Gamma(x+n)/\Gamma(x)$$
 (symbole de Pochammer)

Références : Abramowitz & Stegun (1972), Gradshteyn & Ryzhik (1965)

## Absence de covariables

Etudié dans le cas stationnaire par Park & Padgett (2004).

## Absence de covariables

Etudié dans le cas stationnaire par Park & Padgett (2004). Exentension immédiate au cas général :

#### Absence de covariables

Etudié dans le cas stationnaire par Park & Padgett (2004). Exentension immédiate au cas général :

#### **Proposition**

La fonction de répartition de  $T_c$  est :

$$F_{T_c}(t) = \frac{\Gamma(\eta_t, c/\xi)}{\Gamma(\eta_t)}$$

Si  $\eta$  est dérivable, alors la densité de  $T_c$  est :

$$\begin{split} f_{\mathcal{T}_c}(t) &= \eta_t' \left( \Psi(\eta_t) - \log \left( \frac{c}{\xi} \right) \right) \left( 1 - \frac{\Gamma(\eta_t, c/\xi)}{\Gamma(\eta_t)} \right) \\ &+ \frac{\eta_t'}{\eta_t^2 \Gamma(\eta_t)} \left( \frac{c}{\xi} \right)^{\eta_t} {}_2 F_2(\eta_t, \eta_t; \eta_t + 1, \eta_t + 1; -c/\xi) \end{split}$$

Pour la fonction de répartition :

$$\mathbb{P}[T_c \leqslant t] = \mathbb{P}[D_t \geqslant c]$$

#### Pour la fonction de répartition :

$$\mathbb{P}[T_c \leqslant t] = \mathbb{P}[D_t \geqslant c] \\
= \int_c^\infty \frac{1}{\Gamma(\eta_t)\xi^{\eta_t}} y^{\eta_t - 1} \exp\left(-\frac{y}{\xi}\right) dy$$

#### Pour la fonction de répartition :

$$\mathbb{P}[T_c \leqslant t] = \mathbb{P}[D_t \geqslant c] \\
= \int_c^{\infty} \frac{1}{\Gamma(\eta_t) \xi^{\eta_t}} y^{\eta_t - 1} \exp\left(-\frac{y}{\xi}\right) dy \\
= \frac{\Gamma(\eta_t, c/\xi)}{\Gamma(\eta_t)}$$

$$f_{\mathcal{T}_{\mathcal{C}}}(t) = rac{1}{\Gamma(\eta_t)} rac{d}{dt} \Gamma(\eta_t, \mathbf{c}/\xi) - rac{\eta_t'}{\Gamma(\eta_t)} \Psi(\eta_t) \Gamma(\eta_t, \mathbf{c}/\xi)$$

$$f_{\mathcal{T}_{c}}(t) = \frac{1}{\Gamma(\eta_{t})} \frac{d}{dt} \Gamma(\eta_{t}, c/\xi) - \frac{\eta_{t}'}{\Gamma(\eta_{t})} \Psi(\eta_{t}) \Gamma(\eta_{t}, c/\xi)$$

Calcul de la dérivée de  $\Gamma(\eta_t, c/\xi)$  par rapport à t:

$$f_{\mathcal{T}_c}(t) = rac{1}{\Gamma(\eta_t)} rac{d}{dt} \Gamma(\eta_t, c/\xi) - rac{\eta_t'}{\Gamma(\eta_t)} \Psi(\eta_t) \Gamma(\eta_t, c/\xi)$$

Calcul de la dérivée de  $\Gamma(\eta_t, c/\xi)$  par rapport à t:

$$\Gamma(\eta_t, \mathbf{c}/\xi) = \Gamma(\eta_t) - \gamma(\eta_t, \mathbf{c}/\xi) = \Gamma(\eta_t) - \frac{(\mathbf{c}/\xi)^{\eta_t}}{\eta_t} {}_1F_1(\eta_t; \eta_t + 1; -\mathbf{c}/\xi) ,$$

$$f_{\mathcal{T}_c}(t) = \frac{1}{\Gamma(\eta_t)} \frac{d}{dt} \Gamma(\eta_t, c/\xi) - \frac{\eta_t'}{\Gamma(\eta_t)} \Psi(\eta_t) \Gamma(\eta_t, c/\xi)$$

Calcul de la dérivée de  $\Gamma(\eta_t, c/\xi)$  par rapport à t:

$$\Gamma(\eta_t, \mathbf{c}/\xi) = \Gamma(\eta_t) - \gamma(\eta_t, \mathbf{c}/\xi) = \Gamma(\eta_t) - \frac{(\mathbf{c}/\xi)^{\eta_t}}{\eta_t} {}_1F_1(\eta_t; \eta_t + 1; -\mathbf{c}/\xi) ,$$

Or, 
$$\frac{d}{dt} {}_{1}F_{1}(\eta_{t}; \eta_{t}+1; -c/\xi)$$

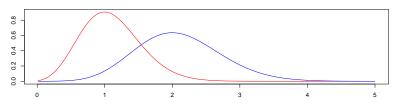
$$= \frac{\eta'_{t}}{\eta_{t}} ({}_{1}F_{1}(\eta_{t}; \eta_{t}+1; -c/\xi) - {}_{2}F_{2}(\eta_{t}, \eta_{t}; \eta_{t}+1, \eta_{t}+1; -c/\xi)) .$$

$$f_{\mathcal{T}_{\mathcal{C}}}(t) = \frac{1}{\Gamma(\eta_t)} \frac{d}{dt} \Gamma(\eta_t, c/\xi) - \frac{\eta_t'}{\Gamma(\eta_t)} \Psi(\eta_t) \Gamma(\eta_t, c/\xi)$$

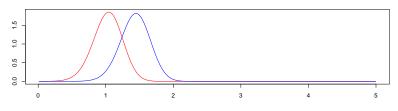
Calcul de la dérivée de  $\Gamma(\eta_t, c/\xi)$  par rapport à t: D'où,

$$\begin{split} &\frac{d}{dt}\Gamma(\eta_t, c/\xi) = \eta_t'\Gamma(\eta_t)\left(\Psi(\eta_t) - \log(c/\xi)\right) \\ &+ \eta_t' \log(c/\xi)\Gamma(\eta_t, c/\xi) + \frac{\eta_t'(c/\xi)^{\eta_t}}{\eta_t^2} {}_2F_2\left(\eta_t, \eta_t; \eta_t + 1, \eta_t + 1; -c/\xi\right) \end{split}$$





Linear case



Quid pour un seuil aléatoire (cf. Abdel-Hameed, 1975)?

Quid pour un seuil aléatoire (cf. Abdel-Hameed, 1975)? Soit C une va de loi exponentielle de paramètre  $\rho$  et  $T_C$  le temps d'atteinte de ce seuil.

Quid pour un seuil aléatoire (cf. Abdel-Hameed, 1975)? Soit C une va de loi exponentielle de paramètre  $\rho$  et  $T_C$  le temps d'atteinte de ce seuil.

#### Proposition

La fonction de répartition de  $T_c$  est :

$$F_{T_C}(t) = 1 - (1 + \rho \xi)^{-\eta_t}$$

et la densité de T<sub>c</sub> est :

$$f_{T_C}(t) = \eta_t' (1 + \rho \xi)^{-\eta_t} \log(1 + \rho \xi)$$

Quid pour un seuil aléatoire (cf. Abdel-Hameed, 1975)? Soit C une va de loi exponentielle de paramètre  $\rho$  et  $T_C$  le temps d'atteinte de ce seuil.

#### Proposition

La fonction de répartition de  $T_c$  est :

$$F_{T_C}(t) = 1 - (1 + \rho \xi)^{-\eta_t}$$

et la densité de T<sub>c</sub> est :

$$f_{T_C}(t) = \eta_t'(1 + \rho \xi)^{-\eta_t} \log(1 + \rho \xi)$$

Même résultat que Frenk & Nicolai (2007) par une autre méthode.

$$\mathbb{P}[T_C \leqslant t] = \int_0^\infty \mathbb{P}[T_C \leqslant t \,|\, C = x] \rho e^{-\rho x} \,dx$$

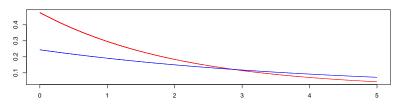
$$\mathbb{P}[T_C \leqslant t] = \int_0^\infty \mathbb{P}[T_C \leqslant t \,|\, C = x] \rho e^{-\rho x} \,dx$$
$$= \frac{\rho}{\Gamma(\eta_t)} \int_0^\infty \Gamma(\eta_t, x/\xi) e^{-\rho x} \,dx$$

$$\mathbb{P}[T_C \leqslant t] = \int_0^\infty \mathbb{P}[T_C \leqslant t \mid C = x] \rho e^{-\rho x} dx$$
$$= \frac{\rho}{\Gamma(\eta_t)} \int_0^\infty \Gamma(\eta_t, x/\xi) e^{-\rho x} dx$$

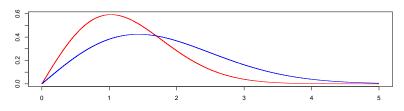
Application de la formule (6.5.36) dans Abramowitz & Stegun (1972) :

$$F_{T_C}(t) = 1 - \left(\frac{1}{1 + \rho \xi}\right)^{\eta_t}$$

#### PDF of the hitting time of a random level



Linear gamma process



Non linear gamma process

Cas général?

Cas général? Approximation par un mélange de loi d'Erlang.

Cas général? Approximation par un mélange de loi d'Erlang.

#### **Proposition**

Soit C une va de densité :

$$f_{C}(x) = \sum_{i=1}^{n} p_{i} \rho^{k_{i}} \frac{x^{k_{i}-1}}{(k_{i}-1)!} e^{-\rho x}$$

avec  $(p_1, ..., p_n)$  tq  $p_1 + \cdots + p_n = 1$ ,  $\rho > 0$  et  $k_1, ..., k_n > 0$ . Alors la fonction de répartition de  $T_C$  est :

$$F_{\mathcal{T}_{C}}(t) = \sum_{i=1}^{n} \frac{p_{i}}{k_{i}!} (\eta_{t})_{k_{i}} \frac{(\rho \xi)^{k_{i}}}{(1 + \rho \xi)^{k_{i} + \eta_{t}}} {}_{2}F_{1}\left(1, \eta_{t} + k_{i}; k_{i}; \frac{\rho \xi}{1 + \rho \xi}\right)$$

## Un seul saut

• On suppose que  $\mu = 0$ : état 1 absorbant = un seul saut!

#### Un seul saut

- On suppose que  $\mu = 0$ : état 1 absorbant = un seul saut!
- Λ : date du seul saut du processus (Z<sub>t</sub>) = va de loi exponentielle de paramètre λ

#### Un seul saut

- On suppose que  $\mu = 0$ : état 1 absorbant = un seul saut!
- Λ : date du seul saut du processus (Z<sub>t</sub>) = va de loi exponentielle de paramètre λ
- Modèles connexes : par exemple, Saassouh et al. (2007)

Expression pour la loi de  $D_t$  (avec t fixé) :

## Expression pour la loi de $D_t$ (avec t fixé):

· conditionnement par rapport à l'instant du seul saut

## Expression pour la loi de $D_t$ (avec t fixé):

- conditionnement par rapport à l'instant du seul saut
- décomposition de l'intégrale sur les intervalles [0, t[ et  $[t, \infty[$

#### Expression pour la loi de $D_t$ (avec t fixé):

- conditionnement par rapport à l'instant du seul saut
- décomposition de l'intégrale sur les intervalles [0, t[ et  $[t, \infty[$
- fonction de survie de D<sub>t</sub> :

$$\mathbb{P}[D_t \geqslant c] = \int_0^t \frac{\Gamma(\eta_u + \eta_{a(t-u)}, c/\xi)}{\Gamma(\eta_u + \eta_{a(t-u)})} \lambda e^{-\lambda u} du + \frac{\Gamma(\eta_t, c/\xi)e^{-\lambda t}}{\Gamma(\eta_t)}$$

## Expression pour la loi de $D_t$ (avec t fixé):

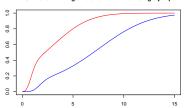
- conditionnement par rapport à l'instant du seul saut
- décomposition de l'intégrale sur les intervalles [0, t[ et  $[t, \infty[$
- fonction de survie de D<sub>t</sub> :

$$\mathbb{P}[D_t \geqslant c] = \int_0^t \frac{\Gamma(\eta_u + \eta_{a(t-u)}, c/\xi)}{\Gamma(\eta_u + \eta_{a(t-u)})} \lambda e^{-\lambda u} du + \frac{\Gamma(\eta_t, c/\xi)e^{-\lambda t}}{\Gamma(\eta_t)}$$

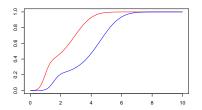
 transformée de Laplace de D<sub>t</sub> (cas linéaire essentiellement) :

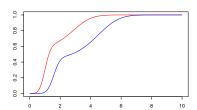
$$\mathbb{E}[e^{-zD_t}] = \lambda (1+z\xi)^{-\alpha t} \frac{1 - e^{-\lambda t} (1+z\xi)^{\alpha(a-1)t}}{\lambda - \alpha(a-1)\ln(1+z\xi)} + (1+z\xi)^{-\alpha t} e^{-\lambda t}$$









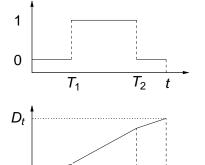


 (D<sub>t</sub>) = processus à accroissements stationnaires et indépendants (processus de Lévy)

- (D<sub>t</sub>) = processus à accroissements stationnaires et indépendants (processus de Lévy)
- Ou encore (D<sub>Tn</sub>): processus de renouvellement alterné (sur la base de deux lois gamma)

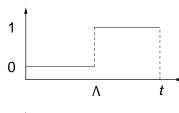
- (D<sub>t</sub>) = processus à accroissements stationnaires et indépendants (processus de Lévy)
- Ou encore (D<sub>Tn</sub>): processus de renouvellement alterné (sur la base de deux lois gamma)
- Conséquence : "permutations" possibles des acroisssements sur les intervalles
   [0, T₁[, [T₁, T₂[, ..., [Tₙ, t] (avec Tռ ≤ t < Tռ+1)</li>

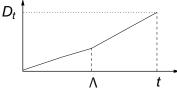
- (D<sub>t</sub>) = processus à accroissements stationnaires et indépendants (processus de Lévy)
- Ou encore (D<sub>T<sub>n</sub></sub>): processus de renouvellement alterné (sur la base de deux lois gamma)
- Conséquence : "permutations" possibles des acroisssements sur les intervalles
   [0, T₁[, [T₁, T₂[,..., [Tₙ, t] (avec Tռ ≤ t < Tռ+1)</li>
- Quantité d'intérêt : Λ = temps de séjour dans l'état 0 pour le processus de covariables sur [0, t]



 $T_1$ 

 $T_2$ 





Loi de Λ?



Loi de  $\Lambda$ ? De Souza e Silva & Gail (1986), Sericola (1988, 1990, 1994)

Loi de  $\Lambda$ ? De Souza e Silva & Gail (1986), Sericola (1988, 1990, 1994)

$$\mathbb{P}[\Lambda \leqslant u] = \sum_{n=0}^{\infty} e^{\tau t} \frac{(\tau t)^n}{n!} \sum_{k=0}^n \Omega(n, k) \sum_{i=k}^n \binom{n}{i} \left(\frac{u}{t}\right)^i \left(1 - \frac{u}{t}\right)^{n-i}$$

#### avec:

- $\tau = \max(\lambda, \mu)$ : horloge du processus  $(Z_t)$
- Ω(n, k): probabilité que la chaîne harmonisée visite k fois l'état 0 en n transitions → relation de réccurence

Loi de  $\Lambda$  ? De Souza e Silva & Gail (1986), Sericola (1988, 1990, 1994)

$$\mathbb{P}[\Lambda \leqslant u] = \sum_{n=0}^{\infty} e^{\tau t} \frac{(\tau t)^n}{n!} \sum_{k=0}^n \Omega(n,k) \sum_{i=k}^n \binom{n}{i} \left(\frac{u}{t}\right)^i \left(1 - \frac{u}{t}\right)^{n-i}$$

#### avec:

- $\tau = \max(\lambda, \mu)$ : horloge du processus  $(Z_t)$
- Ω(n, k): probabilité que la chaîne harmonisée visite k fois l'état 0 en n transitions → relation de réccurence

Erreur  $\varepsilon(N)$  dans la troncature de la série à N termes :

$$\varepsilon(N) \leqslant 1 - \sum_{n=0}^{N} e^{\tau t} \frac{(\tau t)^n}{n!}$$

# **Conclusions et perspectives**

Cas d'un seul saut : calculs "plus" explicites ?

- Cas d'un seul saut : calculs "plus" explicites ?
- Cas général stationnaire : mise en œuvre de calculs numériques ? calculs explicites possibles ?

- Cas d'un seul saut : calculs "plus" explicites ?
- Cas général stationnaire : mise en œuvre de calculs numériques ? calculs explicites possibles ?
- Et des covariables non binaires : expressions plus complexes exploitables numériquement?

- Cas d'un seul saut : calculs "plus" explicites ?
- Cas général stationnaire : mise en œuvre de calculs numériques ? calculs explicites possibles ?
- Et des covariables non binaires : expressions plus complexes exploitables numériquement?
- Et une dynamique non markovienne pour les covariables?
   Au moins via des approximations par des lois de type phase ou dans le cas semi-markovien?

Processus "variance-gamma" :

$$D_t = X_t^{(1)} - X_t^{(2)}$$

avec  $X^{(1)}$  et  $X^{(2)}$  deux processus gamma indépendants

Processus "variance-gamma" :

$$D_t = X_t^{(1)} - X_t^{(2)}$$

avec  $X^{(1)}$  et  $X^{(2)}$  deux processus gamma indépendants : le premier processus décrit les dégradations d'un système et le second les améliorations

Processus "variance-gamma" :

$$D_t = X_t^{(1)} - X_t^{(2)}$$

avec  $X^{(1)}$  et  $X^{(2)}$  deux processus gamma indépendants : le premier processus décrit les dégradations d'un système et le second les améliorations

 Intégration de covariables comme précédemment dans les processus gamma?

Processus "variance-gamma" :

$$D_t = X_t^{(1)} - X_t^{(2)}$$

avec  $X^{(1)}$  et  $X^{(2)}$  deux processus gamma indépendants : le premier processus décrit les dégradations d'un système et le second les améliorations

- Intégration de covariables comme précédemment dans les processus gamma?
- Temps d'atteinte? Sur la base des travaux de Jeannin & Pistorius (2007) sur le processus VG

