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Basic problem in statistics: Fit a parametric family
F = {Fθ; θ ∈ Θ ⊂ Rp} to data.

Possibilities:

Maximum Likelihood Method,
Moment Method,
Minimum Distance Estimators.

The idea underlying minimum distance estimators is to
minimize ’the distance’ between the data and the assumed
model F .
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To measure the distance between the i.i.d. data and the assumed
model F one usually proceeds as follows:

Summarize the data by the empirical distribution function.

Define a (pseudo)–distance d for distribution functions.

Estimate θ by the value which minimizes the distance between
the empirical distribution function Fn and the assumed model
F = {Fθ; θ ∈ Θ ⊂ Rp}.
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Some applications of minimum distance estimators:

Estimation in mixture models:

Pardo (1997): Chi-square minimum distance,
Woodward et al. (1984): Cramer-von-Mises distance.

Manski (1983) and Brown and Wegkamp (2002) applied them
in the context of a reduced-form function: ε = ρ(X ,Y , θ).

Lee and Song (2008) applied them to the estimation in
GARCH models.
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How to proceed if the data come from a random censorship
model? Recall that in the random censorship model

In addition to the i.i.d random variables X1, . . . ,Xn with
distribution function (d.f.) Fθ0 , there exist censoring variables
C1, . . . ,Cn with d.f. H.

We only observe

(Ti ,∆i ) ≡
(
Xi ∧ Ci , I{Xi≤Ci}

)
, i = 1, . . . , n.

Fθ0 can be estimated by the Kaplan-Meier estimator

F̂n(t) = 1−
∏

{i :Ti≤t}

(
1− ∆i

Y (Ti )

)
,

where Y (t) describes the risk set size at time t−.
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Introduction
Short history of Cramér-von Mises minimum distance estimators
ω-dependent generalized weighted Cramér-von Mises distances

Asymptotic results
Small sample behavior. Some simulations

How to proceed if the data come from a random censorship
model? Recall that in the random censorship model

In addition to the i.i.d random variables X1, . . . ,Xn with
distribution function (d.f.) Fθ0 , there exist censoring variables
C1, . . . ,Cn with d.f. H.

We only observe

(Ti ,∆i ) ≡
(
Xi ∧ Ci , I{Xi≤Ci}

)
, i = 1, . . . , n.

Fθ0 can be estimated by the Kaplan-Meier estimator

F̂n(t) = 1−
∏

{i :Ti≤t}

(
1− ∆i

Y (Ti )

)
,

where Y (t) describes the risk set size at time t−.

L. Bordes - LMA - UPPA Cramèr - von Mises estimation
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The Cramér-von Mises (CvM) distance is

DCvM(G1,G2) =

∫
(G1(x)− G2(x))2dG2(x).

A minimum CvM distance estimator of θ is any θ̂n such that

DCvM(Fn,Fθ̂n
) ≤ DCvM(Fn,Fθ) ∀θ ∈ Θ.

By the probability integral transform

DCvM(Fn,Fθ) = 1/(12n) +
n∑

i=1

(
Fθ(X(i))− i/n + 1/(2n)

)2
,

where X(i) denotes the ith order statistic.
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Choi & Bulgren (1968) proposed to estimate the parameter of
interest as the argmin of

n∑
i=1

(
Fθ(X(i))− i/n

)2
.

Öztürk & Hettmansperger (1997) introduced generalized
weighted Cramér-von Mises distance estimators defined by

θ̂ = arg minθ∈Θ

∫
G (Fn(t)− Fθ(t))w(t, θ) dt

where G is taken from a broad class of distance functions.
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Although the Cramér-von Mises distance and the choice of Choi &
Bulgren (1968) differ only by 1/(2n) in the argument of the
function f (x) = x2, MacDonald (1971) provides empirical evidence
that the small sample bias of the estimator based on the
Cramér-von Mises distance is smaller than the small sample bias of
the estimator based on the choice of Choi & Bulgren (1968).
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Desirable properties of the distance used to calculate θ̂ under the
random censorship model:

Easy to calculate.

Allowing to emphasize or de-emphasize tails.

Being sensitive to the amount of censoring.
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Introduction
Short history of Cramér-von Mises minimum distance estimators
ω-dependent generalized weighted Cramér-von Mises distances

Asymptotic results
Small sample behavior. Some simulations

Desirable properties of the distance used to calculate θ̂ under the
random censorship model:

Easy to calculate.

Allowing to emphasize or de-emphasize tails.

Being sensitive to the amount of censoring.

L. Bordes - LMA - UPPA Cramèr - von Mises estimation
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Define ω-dependent generalized weighted Cramér-von Mises
distances under random censorship by:∫ τ

0
Gn

(
F̂n(t)− Fθ(t), ω

)
wn(t)dF̂n(t) θ ∈ Θ, (1),

where wn weight function, and Gn distance function.

An estimator of θ0 is then any θ̂n which minimizes (1).

Replacing integration w.r.t. Fθ by integration w.r.t. F̂n

transforms the integral into a sum.

wn allows to de-emphasize, for example, the right tail.

The distance Gn is allowed to depend on ω, for example the
amount of censoring.
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Examples

Some examples of ω-dependent generalized weighted Cramér-von
Mises distances:

Taking Gn (·, ω) = (·+ 1/(2n))2 and wn(t) = 1, we obtain the
Cramér-von Mises distance although we are integrating
w.r.t. F̂n.

Given MacDonald’s observation an adequate modification
under censoring could be Gn(·, ω) = (·+ 1/cn)

2, where
cn = 2

∑n
i=1 I{Xi≤Ci ,Xi≤τ} and wn ≡ 1.

Taking wn(t) = (1− Fn(t)) allows us to de-emphasize the
right tail. As, under right censoring, we usually have less
observations in the right tail this is desirable.
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Introduction
Short history of Cramér-von Mises minimum distance estimators
ω-dependent generalized weighted Cramér-von Mises distances

Asymptotic results
Small sample behavior. Some simulations

Conditions

The following conditions are imposed to obtain the asymptotic
results:

A. Let τ > 0 be a real number such that
τ < sup{t > 0; (1− Fθ0(t))(1− H(t)) > 0}.

B. sup[0,τ ] |wn − w0|
P−→ 0, where w0 is a bounded deterministic

function on [0, τ ].

C. Let the set Υ consists of all functions G such that

(i) G : [a, b] → R+, a ≤ −1, 1 ≤ b, is nonnegative,
(ii) the restriction of G to the interval [−1, 1] is twice continuously

differentiable,
(iii) G (0) = G ′(0) = 0 and G ′′(0) > 0.

Gn : [a, b]× Ωn → R+ is such that
Gn(·, ω) = G

(
·+ op(1/

√
n)

)
for some G ∈ Υ.

L. Bordes - LMA - UPPA Cramèr - von Mises estimation



Introduction
Short history of Cramér-von Mises minimum distance estimators
ω-dependent generalized weighted Cramér-von Mises distances

Asymptotic results
Small sample behavior. Some simulations

Conditions

The following conditions are imposed to obtain the asymptotic
results:

A. Let τ > 0 be a real number such that
τ < sup{t > 0; (1− Fθ0(t))(1− H(t)) > 0}.

B. sup[0,τ ] |wn − w0|
P−→ 0, where w0 is a bounded deterministic

function on [0, τ ].

C. Let the set Υ consists of all functions G such that

(i) G : [a, b] → R+, a ≤ −1, 1 ≤ b, is nonnegative,
(ii) the restriction of G to the interval [−1, 1] is twice continuously

differentiable,
(iii) G (0) = G ′(0) = 0 and G ′′(0) > 0.

Gn : [a, b]× Ωn → R+ is such that
Gn(·, ω) = G

(
·+ op(1/

√
n)

)
for some G ∈ Υ.

L. Bordes - LMA - UPPA Cramèr - von Mises estimation
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√
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)
for some G ∈ Υ.
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Conditions (continued)

D. If θn ∈ Θ ⊂ Rp, n ∈ N, then

lim
n→+∞

∫ τ

0
G (Fθ0 − Fθn) w0dFθ0 = 0

implies limn→+∞ θn = θ0.

E. There exists a measurable function
η = (η1, . . . , ηp)

t : (0, q) ≡ (0,Fθ0(τ)) → Rp such that
Σ(τ) =

∫ τ
0 η(Fθ0(s))η

t(Fθ0(s))w0(s)dFθ0(s) is positive
definite, and

sup
0≤s≤τ

|Fθ(s)− Fθ0(s)− (θ − θ0)
tη ◦ Fθ0(s)| = o(‖θ − θ0‖)

as ‖θ − θ0‖ → 0.
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Comments

Condition A ensures that the standard results for the
Kaplan-Meier estimator hold true on the interval [0, τ ].

The sequence of functions Gn(·, ω) = G (·+ 1/(2n)), where
G (·) = (·)2, fulfills Condition C.

Under Condition A we have that (1/n)
∑n

i=1 I{Xi≤Ci ,Xi≤τ}
converges to

∫ τ
0 (1− H)dFθ0 ≥ (1− H(τ))Fθ0(τ) > 0.

Therefore, Gn(·, ω) = (·+ 1/cn)
2, also fulfills Condition C.

Condition E allows a first order Taylor expansion of θ 7→ Fθ(x)
around θ0 uniformly in x .
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Introduction
Short history of Cramér-von Mises minimum distance estimators
ω-dependent generalized weighted Cramér-von Mises distances

Asymptotic results
Small sample behavior. Some simulations

Comments

Condition A ensures that the standard results for the
Kaplan-Meier estimator hold true on the interval [0, τ ].

The sequence of functions Gn(·, ω) = G (·+ 1/(2n)), where
G (·) = (·)2, fulfills Condition C.

Under Condition A we have that (1/n)
∑n

i=1 I{Xi≤Ci ,Xi≤τ}
converges to

∫ τ
0 (1− H)dFθ0 ≥ (1− H(τ))Fθ0(τ) > 0.

Therefore, Gn(·, ω) = (·+ 1/cn)
2, also fulfills Condition C.

Condition E allows a first order Taylor expansion of θ 7→ Fθ(x)
around θ0 uniformly in x .

L. Bordes - LMA - UPPA Cramèr - von Mises estimation
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Consistency

Theorem

Any sequence (θ̂n)n≥1 defined by (1) is consistent if Conditions
A–D hold.

Sketch of proof The result would follow if∫ τ

0
G

(
Fθ0 − Fθ̂n

)
w0dFθ0

≤
∫ τ

0
Gn

(
F̂n − Fθ̂n

, ω
)

wndF̂n + oP(1)

≤
∫ τ

0
Gn

(
F̂n − Fθ0 , ω

)
wndF̂n + oP(1)

≤ sup
[0,τ ]

G
(
F̂n − Fθ0 + op(1/

√
n)

)
sup
[0,τ ]

|wn|+ oP(1)

holds true.
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Consistency

Sketch of proof (continued):

sup
θ∈Θ

∣∣∣∣∫ τ

0
Gn

(
F̂n − Fθ, ω

)
wndF̂n −

∫ τ

0
G (Fθ0 − Fθ) w0dFθ0

∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∫ τ

0

[
G

(
F̂n − Fθ + op(1/

√
n)

)
− G (Fθ0 − Fθ)

]
wndF̂n

∣∣∣∣
+ sup

[−1,1]
|G | × sup

[0,τ ]
|wn − w0|

+sup
θ∈Θ

∣∣∣∣∫ τ

0
G (Fθ0 − Fθ) w0d

(
F̂n − Fθ0

)∣∣∣∣
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Consistency

Lemma

Let G fulfilling Condition C. Then, we have that the class of
functions Z = {G ◦ (Fθ0 − Fθ)w0; θ ∈ Θ} is P–Glivenko-Cantelli.

Sketch of proof:

G has finite variations on [−1, 1]. Hence, G = G+ − G−.

W = {Fθ; θ ∈ Θ} ⊂ M where M is the set of monotone
increasing functions.

The class M has a finite ε–bracketing number.

W ′ = {Fθ − Fθ0 ; θ ∈ Θ} has a finite bracketing number.

Let [li , ui ], i = 1, . . . ,m, be the brackets covering W ′. Then
[w0G

+ ◦ li ,w0G
+ ◦ ui ], i = 1, . . . ,m, cover

G+ ◦W ′ = {w0G
+ ◦ z ; z ∈ W ′}.
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Asymptotic normality

Theorem

Let B be a centered Gaussian process on [0, τ ] with covariance
function ρ, where for (s, t) ∈ [0, τ ]2:

ρ(s, t) = (1− Fθ0(s))(1− Fθ0(t))

∫ s∧t

0

dΛθ0(u)

(1− Fθ0(u))(1− H(u))

If Conditions A–E hold, then
√

n(θ̂n − θ0) converges to a centered
normal distribution with variance Σ−1(τ)C (τ)Σ−1(τ) where
C (τ) = Var

(∫ τ
0 Bη ◦ Fθ0w0dFθ0

)
.
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Sketch of proof:

Guess a ’limit’ of the stochastic process

Xn(ξ) = n

∫ τ

0
Gn

(
F̂n − Fθ0+ξ/

√
n, ω

)
wndF̂n, ξ ∈ Rp.

which is minimized by ξ̂n =
√

n(θ̂n − θ0).

’Solution’ is the process (Bn =
√

n(F̂n − Fθ0))

X̄n(ξ) =
G ′′(0)

2

∫ τ

0

(
Bn − ξtη ◦ Fθ0

)2
w0dFθ0 , ξ ∈ Rp,

Indeed, for any A = {ξ ∈ Rp; ‖ξ‖ < c} we have

sup
ξ∈A

∣∣Xn(ξ)− X̄n(ξ)
∣∣ P−→ 0.
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Sketch of proof (continued):

The maximizer of X̄n is ξ̄n = Σ−1(τ)
∫ τ
0 Bnη ◦ Fθ0w0dFθ0 .

ξ̄n converges weakly to Σ−1(τ)
∫ τ
0 Bη ◦ Fθ0w0dFθ0 .

Show that ξ̂n =
√

n(θ̂n − θ0) is OP(1).

Hence, the probability of En = {ξ̄n ∈ A, ξ̂n ∈ A} is as large as
we want for n large enough.

Finally, use the uniform convergence of Xn to X̄n to show that
the probability of {ξ̂n ∈ A\Bn}, where
Bn = {ξ ∈ Rp; ‖ξ − ξ̄n‖ < ε} converges to zero.

Thus, ξ̂n = ξ̄n + oP(1).
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Introduction
Short history of Cramér-von Mises minimum distance estimators
ω-dependent generalized weighted Cramér-von Mises distances

Asymptotic results
Small sample behavior. Some simulations

Sketch of proof (continued):

The maximizer of X̄n is ξ̄n = Σ−1(τ)
∫ τ
0 Bnη ◦ Fθ0w0dFθ0 .

ξ̄n converges weakly to Σ−1(τ)
∫ τ
0 Bη ◦ Fθ0w0dFθ0 .

Show that ξ̂n =
√

n(θ̂n − θ0) is OP(1).

Hence, the probability of En = {ξ̄n ∈ A, ξ̂n ∈ A} is as large as
we want for n large enough.

Finally, use the uniform convergence of Xn to X̄n to show that
the probability of {ξ̂n ∈ A\Bn}, where
Bn = {ξ ∈ Rp; ‖ξ − ξ̄n‖ < ε} converges to zero.

Thus, ξ̂n = ξ̄n + oP(1).

L. Bordes - LMA - UPPA Cramèr - von Mises estimation
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Hence, the probability of En = {ξ̄n ∈ A, ξ̂n ∈ A} is as large as
we want for n large enough.

Finally, use the uniform convergence of Xn to X̄n to show that
the probability of {ξ̂n ∈ A\Bn}, where
Bn = {ξ ∈ Rp; ‖ξ − ξ̄n‖ < ε} converges to zero.

Thus, ξ̂n = ξ̄n + oP(1).

L. Bordes - LMA - UPPA Cramèr - von Mises estimation
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Small sample behavior

Gn (·)2 (· + 1/(2n))2 (· + 1/n)2 (· + 1/cn)
2

π̂ MSE π̂ MSE π̂ MSE π̂ MSE

0% 0.254 0.132 0.297 0.136 0.341 0.135 0.297 0.135
20% 0.241 0.142 0.283 0.145 0.326 0.147 0.294 0.147
40% 0.218 0.148 0.258 0.154 0.299 0.158 0.288 0.161
60% 0.172 0.153 0.206 0.163 0.243 0.171 0.273 0.191

Table 1: Estimation of the mixture parameter based on twenty
observations from a Weibull mixture with cdf
Fθ = 1− 0.3 exp(−(x/5)3)− 0.7 exp(−(x/2)3)). The values given
in the table are based on 10,000 simulations.
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Small sample behavior

Gn (·)2 (· + 1/(2n))2 (· + 1/n)2 (· + 1/cn)
2

π̂ MSE π̂ MSE π̂ MSE π̂ MSE

0% 0.289 0.069 0.300 0.069 0.311 0.069 0.300 0.069
20% 0.284 0.074 0.295 0.074 0.306 0.074 0.297 0.074
40% 0.278 0.082 0.289 0.082 0.300 0.082 0.296 0.083
60% 0.258 0.098 0.269 0.098 0.279 0.098 0.285 0.099

Table 2: Estimation of the mixture parameter based on eighty
observations from a Weibull mixture with cdf
Fθ = 1− 0.3 exp(−(x/5)3)− 0.7 exp(−(x/2)3). The values given
in the table are based on 10,000 simulations.
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Behavior under contamination

To study the behavior of the estimators under a contamination
model when censoring might be present, we took three different
contamination models, namely,

CM1 = {F̃ = (1− ε)F + εH1}
CM2 = {F̃ = (1− ε)F + εH2},
CM3 = {F̃ = (1− ε)F + εH3}.

where ε = 0.05, F is the d.f. of the above Weibull mixture, and
H1, H2 and H3 are gamma mixtures.
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Behavior under contamination

The properties of the three contamination models can be
summarized as follows:

CM1 corresponds to a ’symmetric’ contamination model in the
sense that P(X < Y1) ≈ P(X > Y1), where X ∼ F ,Y1 ∼ H1,
and that the probability of being censored is approximately
equal for X and Y1.
CM2 corresponds to a ’left’ contamination model, i.e.
P(X < Y2) ≈ 9%, Y2 ∼ H2, and the probability for X to be
censored much larger than the probability for Y2 to be
censored.
CM3 corresponds to a ’right’ contamination model, i.e.
P(X < Y3) ≈ 93%, Y3 ∼ H3, the probability for Y3 to be
censored much larger than the probability for X to be
censored.
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Symmetric contamination model

Gn (·)2 (· + 1/(2n))2 (· + 1/n)2 (· + 1/cn)
2

π̂ MSE π̂ MSE π̂ MSE π̂ MSE

0% 0.278 0.100 0.300 0.100 0.322 0.100 0.300 0.100
40% 0.258 0.117 0.280 0.117 0.301 0.118 0.295 0.119

Table 3: Estimation of the mixture parameter based on forty
observations from a Weibull mixture with cdf
Fθ = 1− 0.3 exp(−(x/5)3)− 0.7 exp(−(x/2)3) under a symmetric
contamination model. The values given in the table are based on
10,000 simulations.
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Left contamination model

Gn (·)2 (· + 1/(2n))2 (· + 1/n)2 (· + 1/cn)
2

π̂ MSE π̂ MSE π̂ MSE π̂ MSE

0% 0.245 0.099 0.267 0.099 0.289 0.099 0.267 0.099
40% 0.224 0.115 0.245 0.116 0.267 0.117 0.259 0.118

Table 4: Estimation of the mixture parameter based on forty
observations from a Weibull mixture with cdf
Fθ = 1− 0.3 exp(−(x/5)3)− 0.7 exp(−(x/2)3) under a left
contamination model. The values given in the table are based on
10,000 simulations.
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Right contamination model

Gn (·)2 (· + 1/(2n))2 (· + 1/n)2 (· + 1/cn)
2

π̂ MSE π̂ MSE π̂ MSE π̂ MSE

0% 0.321 0.097 0.343 0.097 0.365 0.096 0.343 0.097
40% 0.299 0.117 0.320 0.117 0.342 0.117 0.343 0.097

Table 5: Estimation of the mixture parameter based on forty
observations from a Weibull mixture with cdf
Fθ = 1− 0.3 exp(−(x/5)3)− 0.7 exp(−(x/2)3) under a left
contamination model. The values given in the table are based on
10,000 simulations.
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Behavior under contamination

Is there any heuristic or theoretical explanation for the observed
behavior under the different contamination models? Heuristically,

The Weibull mixture is
Fθ(t) = 1− θ exp(−(t/5)3)− (1− θ) exp(−(t/2)3) with the
first component stochastically larger than the second.

On average, under CM2 two small observations. Therefore, by
minimizing the distance between the Weibull mixture and the
empirical distribution function one puts less weight on the
stochastically larger component of the mixture.

On average, under CM3 two large observations. Thus, more
weight on the stochastically larger component.
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Behavior under contamination

Theoretically, if there is no censoring:

For Fθ(t) = 1− θ exp(−(t/5)3)− (1− θ) exp(−(t/2)3) and
wn ≡ 1 the influence function IF∆x of H at x is, up to a
positive constant, given by∫ τ

0

(
− exp(−(t/5)3) + exp(−(t/2)3)

)
· (I{t≥x} − H)dH(t)

which is

negative for small x ,

positive for large x , x ≤ τ .
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THANK YOU!
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